期刊文献+

多靶标生物标志物检测的微流体磁敏生物传感器研制 被引量:5

Development of Integrated Microfluidic Magnetic Biosensor for Multi-biomarker Detection
下载PDF
导出
摘要 将磁敏传感器与微流体测试卡集成,研制了可快速检测多靶标生物标志物的微流体免疫磁敏传感器。以3种消化系统肿瘤标志物(甲胎蛋白、癌胚抗原、糖链抗原)为模型靶标,对免疫反应各步反应的液体流速、免疫反应时间以及反应后的冲洗速度进行了优化,评价了多靶标同时检测的系统性能。在微流体磁敏生物传感器系统中,建立了血清样本中3种靶标同时检测的标准工作曲线,AFP、CEA和CA19-9的检出限分别达到0.1μg/L、0.1μg/L和30 U/mL,线性范围跨越4个数量级。微流体磁敏生物传感器可在30 min内完成多靶标生物标志物检测,临床血清样本的测试结果与ELISA法一致,具有检测时间短、灵敏度高的优点。 By integrating magnetic sensors and microfluidic system,a microfluidic magnetic bioprocessor was developed for the rapid determination of multi-target biomarkers.Three digestive system tumor makers(α-fetoprotein(AFP),carcinoembryonic antigen(CEA),carbohydrate antigen 19-9,(CA19-9) were simultaneously detected in the microchannel as a model system to evaluate this multi-target detection system performance.The experiment parameters including injecting flow velocity,the immune reaction time and rinsing rate for each step were optimized.In the microfluidic magnetic biosensor,standard curves were established for the detection of three tumor markers in serum samples,with the detection limits of 0.1 μg/L(CEA),0.1 μg/L(AFP),30 U/mL(CA19-9) and the dynamic ranges spanning four orders of magnitude.Multi-biomarker analysis could be completed within 30 min,and good linear correlations were obtained between the results of magnetic biosensor and ELISA method,while the former was with the advantage of fast detection and high sensitivity.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2013年第9期1302-1307,共6页 Chinese Journal of Analytical Chemistry
基金 国家科技支撑计划(No.2013BAI03B) 中国科学院知识创新工程重要方向项目(No.KJCX2-YW-M15) 广东省中国科学院全面战略合作项目(No.2011A090100036)资助
关键词 微流体 磁敏传感器 多靶标生物标志物 Microfluidic system Magnetic tunnel junction biosensor Multi-biomarker detection
  • 相关文献

参考文献21

  • 1Srinivasan V,Pamula V K,Fair R B.Lab Chip,2004,4(4):310-315.
  • 2Dittrich P S,Manz A,Nature Reviews Drug Discovery,2006,5(3):210-218.
  • 3林炳成,秦建华.图解微流控芯片实验室.北京:科学出版社,2008:3-45.
  • 4Song H,Ismagilov R F.Journal of the American Chemical Society,2003,125 (47):14613-14619.
  • 5Tamanaha C,Malito M,Mulvaney S,Whitman L.Lab Chip,2009,9(10):1468-1471.
  • 6Geng P,Zhang X,Teng Y,Fu Y,Xu L,Xu M,Jin L,Zhang W.Biosensors and Bioelectronics,2011,26 (7):3325-3330.
  • 7刘文明,李立,任丽,王建春,涂琴,王雪琴,王进义.微流控细胞芯片生命分析应用多元化[J].分析化学,2012,40(1):24-31. 被引量:20
  • 8高健,殷学锋,方肇伦,夏方诠浙江大学化学系微分析系统研究所.微流控芯片单细胞进样和溶膜[J].高等学校化学学报,2003,24(9):1582-1584. 被引量:10
  • 9张琼,周小棉,严伟,梁广铁,张其超,刘大渔.聚二甲基硅氧烷-纸复合微流控芯片上的肝癌细胞三维培养[J].分析化学,2012,40(7):996-1001. 被引量:13
  • 10Harris R D,Luff B J,Wilkinson J S,Piehler J,Brecht A,Gauglitz G,Abuknesha R A.Biosensors and Bioelectronics,1999,14(4):377-386.

二级参考文献125

  • 1马明生,吴晓军,刘利琳,韩慧婉,刘国诠.用毛细管电泳-激光诱导荧光-增强型电荷耦合检测器测定痕量氨基酸[J].分析化学,1996,24(9):1019-1023. 被引量:11
  • 2Zhu,H.,Snyder,M.Curr.Opin.Chem.Biol.,2001,5:40.
  • 3MacBeath,G.Nat Genet,2002,32(suppl.):526.
  • 4Templin,M.F.;Stoll,D.;Schrenk,M.;Traub,P.C.;V(o)hringer,C.F.;Joos,T.O.Trends Biotechnol.,2002,20:160.
  • 5Ng,J.H.;Ilag,L.L.Journal of Cellular and Molecular Medicine,2002,6:329.
  • 6Wilson,D.S.;Nock,S.Angew.Chem.Int.Edit.,2003,42:494.
  • 7Angenendt,P.Drug Discovery Today,2005,10:503.
  • 8Kusnezow,W.;Hoheisel,J.D.Biotechniques,2002,33(suppl.):14.
  • 9Liotta,L.A.;Espina,V.;Mehta,A.I.;Calvert,V.;Rosenblatt,K.;Geho,D.;Munson,P.J.;Young,L.;Wulfkuhle,J.;Petricoin Ⅲ,E.F.Cancer Cell,2003,3:317.
  • 10Lutanie,E.;Voegel,J.C.;Schaaf,P.;Freund,M.;Cazenave,J.P.;Schmitt,A.Proc.Natl.Acad.Sci.U.S.A.,1992,89:9890.

共引文献42

同被引文献66

  • 1徐迎晖.磁电阻随机存储器MRAM的原理与应用[J].电子技术(上海),2006,33(3):60-62. 被引量:3
  • 2Terauchi N,Noguchi S,Igarashi H.Numerical simulation of SQUID magnetometer considering equivalent electrical circuit of Josephson junction[J].Physics Procedia,2014,58:200-203.
  • 3Grossman H L,Myers W R,Vreeland V J,et al.Detection of bacteria in suspension by using a superconducting quantum interference device[C]∥Proc Natl Acad Sci(PNAS),2003:129-134.
  • 4Sharif E,Kiely J,Luxton R.Novel immunoassay technique for rapid measurement of intracellular proteins using paramagnetic particles[J].Journal of Immunological Methods,2013,388:78-85.
  • 5Eveness J,Kiely J,Hawkins P,et al.Evaluation of paramagnetic particles for use in a resonant coil magnetometer based magnetoimmunoassay[J].Sensors and Actuators B,2009,139:538-542.
  • 6Ripka P.Sensors based on bulk soft magnetic materials:Advances and challenges[J].Journal of Magnetism and Magnetic Materials,2008,320:2466-2473.
  • 7Nikitin P I,Vetoshko P M,Ksenevicha T I.New type of biosensor based on magnetic nanoparticle detection[J].Journal of Magnetism and Magnetic Materials,2007,311:445-449.
  • 8Aytur T,Foley J,Anwar M,et al.A novel magnetic bead bioassay platform using a microchip-based sensor for infectious disease diagnosis[J].Journal of Immunological Methods,2006,314:21-29.
  • 9Vavassoria Busato P A,Chiapatti A,et al.Magnetoresistance of single permalloy circular rings[J].Journal of Magnetism and Magnetic Materials,2007,316:944-947.
  • 10Volmer M,Avram M.Signal dependence on magnetic nanoparticles position over a planar Hall effect biosensor[J].Microelectronic Engineering,2013,108:116-120.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部