期刊文献+

基于三部图的随机游走知识推送方法研究 被引量:1

Study on Knowledge Push Method Based on Tripartite Graphs Random Walk with Restart
下载PDF
导出
摘要 针对传统知识推送方法中数据稀疏性的问题,本文提出了一种基于三部图的随机游走知识推送方法。该方法首先建立并分析了"用户-项目-标签"三部图,得到了用户对项目和标签的初始评分值;然后分别在项目空间和标签空间中利用随机游走算法,生成若干个待推送项目,并重新计算预测评分;最后对用户进行知识推送。实验结果表明,该推送方法有效地提高了知识推送的精确度,满足了用户的知识需求。 This paper proposes a random walk knowledge push method based on tripartite graphs, to solve the problem of data sparsity in traditional knowledge push method. This method builds a "user-project-tag" tripartite graphs, and generates users" initial values of projects and tags, then uses random walk algorithm in the project space and tag space to generate several projects pending to be pushed, and refre- shes the values, finally pushes them to users. The experimental results shows, this method can improve the accuracy of knowledge push ef- fectively to satisfy users" demands.
出处 《情报杂志》 CSSCI 北大核心 2013年第9期185-189,184,共6页 Journal of Intelligence
基金 国家自然科学基金资助项目"敏捷供应链知识服务网络研究"(编号:71172169)
关键词 数据稀疏性 知识推送 三部图 随机游走 data sparsity knowledge push tripartite graphs random walk with restart
  • 相关文献

参考文献16

  • 1Adomavicius G,Tuzhilin A. Toward the Next generation of Rec-ommender Systems : A Survey of the State-of-the-art and Pos-sible Extensions [ J]. IEEE transactions on knowledge and da-taengineering. 2005,17(6) :734-749.
  • 2Herlocker J L,Konstan J A,Terveen L G,etal. Evaluating Col-laborative Filtering Recommender Systems [ J]. ACM Transac-tions on Infonnation System,2004,22(1) :5-53.
  • 3Thomas Vander Wai. Folksonomy [EB/OL]. [2011-10-19].http : //vanderwai. net/foiksonomy. html.
  • 4Tso-Sutter KHL,Marinho LB Schmidt-Thieme L. Tag AwareRecommender Systems by Fusion of Collaborative Filtering Al-gorithms [A]. Wainwright R L,Haddad H M. Proceedings ofthe 2008 ACM Symposium on Applied Computing [ C] . NewYork: ACM, 2008: 1995-1999.
  • 5Huang Z, Zeng D,Chen H. Analyzing Consumer ProductGraphs : Empirical Findings and Applications in Recommender-Systems[ J]. Management Science,2007,53(7) :1146-1164.
  • 6Jaeschke R,Marinho L, Hotho A,et al. Tag Recommendationsin Social Book Marking Systems [ J]. Al Communications ,2008,21(4):231-247.
  • 7Yildirim H,Krishnamoorthy M S. A Random Walk Method forAlleviating the Sparsity Problem in Collaborative Filtering[ C].Proceedings of the 4 th ACM Conference on Recommender Sys-tems Lausanne, Switzerland,2008 : 131-138.
  • 8Milicevic A K, Nanopoulos A, Ivanovic M. Social tagging inRecommender Systems: a Survey of the State-of-the-art andPossible Extensions[ J]. Artificial Intelligence Review,2010,33(3):187-209.
  • 9毕达天,邱长波,滕广青.基于概念格的Folksonomy知识组织研究——Tag Spam过滤指标权值配置[J].情报学报,2011,30(10):1078-1085. 被引量:4
  • 10Noruzi A. Foiksonomies-Why do We Need Controlled Vocabula-ry. [J]. Weboiogy ,2007,4(2) : 1 -6.

二级参考文献30

  • 1GANTER,B.,WILLE,R.形式概念分析[M].马垣,张学东,迟呈英,王丽君,译.北京:科学出版社,2007:1-2,4.
  • 2Herlocker J L, et al. Evaluating Collaborative Filtering Recommender Systems[J]. ACM Trans, Inform, Syst, 2004,22 (5).
  • 3Konstan J A , et al. Applying collaborative filtering to usenet news [J]. Commun. ACM, 1997,40: 77.
  • 4Liu J-G, Wang B-H, Guo Q Imroved collaboration filtering algorithm via Information transformation [J]. Int. J. Mod. Phys, 2009,C 20:285.
  • 5Liu J-G, et al. Effects of high-order correlations on personalized reeommendations for bipartite networks [ J ]. Physiea A, 2010, 389:881.
  • 6Balabanovs M, Shoham Y. Content-based, Collaborative Recommendation [J]. Commun, ACM, 1997,40: 66.
  • 7Pazzani M J. A Framework for Collaborative, Content-based and Demographic Filtering [J]. Artif. Intell. Rev. , 1999,13 : 393.
  • 8Ou Q, J in Y-D, Zhou T, et al. Power-law Strength-Degree Correlation From a Resource-Allocation Dynamics on Weighted Networks [J]. Phys. Rev. E, 2007,75 : 021102.
  • 9Gori M,Pucol A. A random-walk based scoring algorithm with application to recommender systems for large-scale ecommerce [c] // Proceedings of WEBKDD' 06. Philadelphia, USA, 2006: 127 -146.
  • 10Pazzani M, Billsus D. Learning and revising user profiles: The identification of interesting web sites[J]. Machine Learning, 1997,27:313.

共引文献5

同被引文献20

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部