期刊文献+

高阶线性微分方程的解在角域内的增长性及Borel方向 被引量:1

The Growth and Borel Direction of Solutions of Higher Order Linear Differential Equation in Angular Domains
下载PDF
导出
摘要 主要运用角域上的值分布理论和方法,研究了整系数高阶线性微分方程f(n)+An-1f(n-1)+…+A0f=0的解在角域内的增长性和Borel方向.假定Aj(0≤j≤n-1)满足某些条件,证明了方程的非零解在含有A0的λ(λ>0)级Borel方向的任意角域内的增长级为无穷,且非零解的无穷级Borel方向与A0的λ级Borel方向一致. By using the fundamental theory and method of value distribution in angular domain,it is investigated that growth and Borel direction of solutions in angular domains of the higher order linear differential equation f(n)+ A n-1 f(n-1)+ … + A 0 f = 0 where A j(j =0,…,n-1) are entire functions.Given some conditions for the coefficients A j(0≤j≤n-1),it is proved that every solution f0 of the equation is of the infinite order in any angular domain which has λ order Borel direction of A 0,and the ∞ order Borel direction of the solution is unanimous with the λ order Borel direction of A0.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2013年第4期401-405,共5页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(11171170)资助项目
关键词 微分方程 角域 BOREL方向 无穷级 differential equations solutions angular domain Borel direction infinite order
  • 相关文献

参考文献13

  • 1Hayman W K. Meromorphic function [ M ]. Oxford : Claren- don Press, 1964.
  • 2Wu Shengjian. On the growth of solutions of second order linear differential equations in an angle [ J ]. Complex Variable, 1994,24 (3/4) : 241-248.
  • 3Xu Junfeng, Yi Hongxun. Growth of the solutions of higher order linear differential equations in an angle [ J ]. J Sys Sci & Math Scis, 2008,28 ( 6 ) : 702-708.
  • 4Chen Zongxuan, Gao Shian. The complex oscillation theory of certain non-homogeneous linear differential equations with transcendental entire coefficients [ J]. 1993, 179 (2) :403-416.
  • 5刘旭强,易才凤.关于2阶线性微分方程f″+Af'+Bf=0解的增长性[J].江西师范大学学报(自然科学版),2013,37(2):171-174. 被引量:8
  • 6Valiron G. Recherches sur le theoreme de M Borel darts la theorie des fonctions meromorphes [ J]. Aca Math, 1929, 52( 1 ) :67-92.
  • 7易才凤,刘旭强.方程f″+Af'+Bf=0的解在角域内的增长性及Borel方向[J].江西师范大学学报(自然科学版),2013,37(1):1-5. 被引量:5
  • 8Goldberg A A, Ostrovskii I V. The distribution of values of merornorphic functions [ M ]. Moscow: Izdat Nauk. 1970.
  • 9Nevarmlinna R. Uber die eigenschaften meromorpher funk- tionen in einem winkelraum [ J 1. Acta Soc sci Fenn, 1925,50(12) : 1-45.
  • 10Tsuji M. Potential theory in modem function theory [ M ]. Tokyo : Maruzen Co Ltd, 1959.

二级参考文献17

  • 1Hayman W. Meromorphic function [ M ]. Oxford : Claren- don Press, 1964.
  • 2Wu Shengjian. On the location of zeros of solution off" + Af= 0 where A (z) is entire [ J ]. Math Scand, 1994,74 (2) :293-312.
  • 3Laine I, Wu Shengjian. Removable sets in the oscillation theroy of complex differential equations [ J ]. Math Anal Appl, 1997,214 ( 1 ) : 233-244.
  • 4Gundersen G G. Finite order solutions of second order lin- ear differential equations [ J ]. Trans Amer Math Soc, 1988,305( 1 ) :415-429.
  • 5Hellenstein S, Miles J, Rossi J. On the growth of solutions off" +gf +h f=0 [J]. Trans Amer Math Soc,1991,324 (2) :693-706.
  • 6Wu Shengjian. On the growth of solution of second order linear differential equation in an angle [ J ]. Complex Vari- ables, Theory and Application, 1994,24 (3/4) :241-248.
  • 7Valiron G. Recherches sur le theoreme de M. Borel dans la theorie des fonctions meromorphes [ J ]. Aca Math, 1929, 52( 1 ) :67-92.
  • 8Goldberg A A, Ostrovskii I V. The distribution of values of meromorphic functions [ M ]. Moscow : Izdat Nauk, 1970.
  • 9Nevannlinna R H. Uber die eigenschaften meromorpher funktionen in einem winkelraum [ J ]. Acta Soc Sci Fenn, 1925,50(12) :1-45.
  • 10Tsuji M. Potential theory in modern function [ M ]. Tokyo : Maruzen Co LTD, 1959.

共引文献11

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部