期刊文献+

关于递归生成加权移位算子正的2次亚正规

On Positively Quadratically Hyponormal of Recursively Generated Weighted Shits
下载PDF
导出
摘要 对于递归生成的加权移位算子Wα(x,y):1/y,1/x,(1/a,1/b,1/c)∧,利用无穷维矩阵的正定性得到了其2-亚正规性和正的2次亚正规性,推广了已有的一些结论. The 2-hyponormality and positively quadratically hyponormality of recursively generated weighted shift Wα(x,y) with α(x,y) :1/y,1/x,(1/a,1/b,1/c)∧are considered by using the positivity of in finite dimension matrix,which extend some known results.
作者 董延武
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2013年第4期421-424,共4页 Journal of Jiangxi Normal University(Natural Science Edition)
关键词 算子 2-亚正规 2次亚正规 正的2次亚正规 operator 2-hyponormal quadratically hyponormal positively quadratically hyponormal
  • 相关文献

参考文献11

  • 1Curto R, Fialkow L. Recursively generated weighted shifts and the subnormal completion problem II[ J ]. Integrall Equations and Operator Theory ,1994,18(3 ) :369-426.
  • 2Exner G, Jung I B, Park S S. Weakly n-hyponormal weigh- ted shifts and their examples [ J ]. Integral Equations Op- erator Theory, 2006,54 ( 2 ) : 215 -233.
  • 3Curto R. Quadratically polynomially hyponormal weighted shifts [ J ]. Integral Equations Operator Theory, 1990, 13 (1) :49-66.
  • 4Curto R. Joint hyponormality:A bridge between hyponor- maliy and subnomality [ J ]. Proc Sym Math, 1990,51 ( 1 ) : 69-91.
  • 5Curto R, Fialkow L. Recursively generated weighted shifts and the subnormal completion problem [ J ]. Integral Equations and Operator Theory, 1993,17 ( 2 ) :202-246.
  • 6Exner G ,Jung I B, Park D W. Some quadratically hyponor- real weighted shifts [ J ]. Integral Equations and Operator Theory,2008,60( 1 ) :13-36.
  • 7Jung I B, Park S H, Stochel J. L (n) -hyponormality : a missing bridge between subnormality and paranormality [.1]. J Aust Math Soc,2010,88 (2) :193-203.
  • 8Jung I B, Park S S. Quadratically hyponormal weighted shifts and their examples [ J ]. Integral Equations and Op- erator Theory, 2000,36 (4) :480 -498.
  • 9Dong Yanwu, Exner G, Jung I B, et al. Quadratically hy- ponormal recursively generated weighted shifts [ J ]. Oper Theo Adv Appl,2008,187 ( 1 ) : 141-155.
  • 10Exner G,Jung I B,Li Chunji. On k-hyperexpansive oper- ators [ J]. J Math Anal App1,2006,323( 1 ) :569-582.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部