期刊文献+

中医诊断模型构建中的两种常用数据挖掘分类技术

Two Classification Algorithms of Data Mining Frequently Adopted in Creating Diagnosis Model of Traditional Chinese Medicine
下载PDF
导出
摘要 决策树和神经网络是经典的数据挖掘分类技术,介绍这两种常用分类技术及其在中医诊断模型构建中的应用,分析总结了算法的优势与不足,以期为研究者在选择算法时提供依据。 The creation of diagnosis model of traditional Chinese medicine is the classification of tradi- tional Chinese medicine samples in essence. Classification decision tree and neural network are two classical data mining technologies. These two classification technologies and their application in the creation of diag- nosis model of traditional Chinese medicine are introduced in this paper. The advantages and disadvantages of both technologies are analyzed in detail, providing a basis for researchers to choose the appropriate algo-rithm.
出处 《数理医药学杂志》 2013年第5期550-552,共3页 Journal of Mathematical Medicine
基金 国家科技重大专项资助项目(2012ZX10005001-004)
关键词 数据挖掘 中医诊断模型 分类算法 data mining diagnosis model of traditional Chinese medicine classification algorithm
  • 相关文献

参考文献15

二级参考文献69

共引文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部