期刊文献+

管道倾斜角度对超临界CO_2管内换热特性的影响 被引量:11

Effect of Tube Inclination Angel on Heat Transfer Characteristics of Supercritical CO_2 in Tube
下载PDF
导出
摘要 在恒热流加热工况下,对超临界CO2在不同倾角的微细圆管内混合对流换热进行了数值模拟。采用FLUENT软件分析了不同倾角时管内截面温度、轴向速度、二次流、上母线传热系数、周向壁面温度和Nuw的变化规律,并引入相对二次流动能定量表示二次流强度。研究发现:倾斜管内顶部流体温度高于底部,周向Nuw在底部高于顶部,速度分布不是中心对称且其峰值出现在管中心轴线下侧;浮升力引发的二次流先增大后减小,且在靠近入口处达到峰值;倾斜管内上母线温度高于下母线,上母线传热系数在拟临界温度附近达到峰值。通过水平管中浮升力判据,得到了浮升力对对流换热的影响规律。 Laminar mixed convection heat transfer of supercritical CO2 in miniature circular tubes with different inclination angles and under constant heat flux heating condition was determined through numerical simulation. The distribution and variation of the cross-sectional temperature, axial velocity, secondary flow, the top generatrix heat transfer coefficient, the circumferential wall temperature and the Nusselt number were analysed by using the FLUENT software for different tube inclination angles, and the relative secondary flow kinetic energy was introduced to quantitatively express the intensity of the secondary flow. The results show that the top fluid temperature is higher than the bottom's, the bottom circumferential Nusselt number is higher than thetop^s, the distribution of axial velocity is not centrosymmetric and the velocity reaches peak value in the lower side of the tube center axis. The buoyancy-induced secondary flow first increases, then decreases, and reaches the maximum near the entrance. The top generatrix heat transfer coefficient reaches peak value near the critical temperature and is much higher than the bottom generatrix's. The influence of buoyancy on convection heat transfer is obtained according to the horizontal pipe buoyancy criterion.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2013年第9期1522-1528,共7页 Atomic Energy Science and Technology
关键词 数值模拟 混合对流 超临界CO_2 浮升力 numerical simulation mixed convection supercritical CO2 buoyancy
  • 相关文献

参考文献14

  • 1CAOXL, RAOZH, LIAOSM. Laminar con vective heat transfer of supercritical CO2 in hori zontal miniature circular and triangular tubes[J] Applied Thermal Engineering, 2011, 31(14-15) 2 374-2 384.
  • 2李志辉,姜培学.超临界压力CO_2在垂直管内对流换热数值模拟[J].原子能科学技术,2009,43(3):247-251. 被引量:7
  • 3LIAO S M, ZHAO T S. A numerical investigation of laminar convection of supercritieal carbon dioxide in vertical mini/micro tubes[J] Progress in Compu- tational Fluid Dynamics, 2002, 2(2-4) .. 144-152.
  • 4LIAO S M, ZHAO T S. Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal mini-micro channels[J]. Jour- nal of Heat Transfer, 2002, 124(3): 413-420.
  • 5JIANG P X, ZHANG Y, ZHAO C R, et al. Convection heat transfer of CO2 at supercritical pressures in a vertical mini tube at relatively low Reynolds numbers [- J . Experimental Thermal and Fluid Science, 2008, 32(8) 1 628 1 697.
  • 6JIANG P X, ZHANG Y, SHI R F. Experimentaland numerical investigation of convection heat trans- fer of COz at supercritical pressures in a vertical mini-tube[J]. International Journal of Heat and Mass Transfer, 2008, 51(11-12): 3 052-3 056.
  • 7WALISCH T, MTILLER M, DORFLER W, et al. The heat transfer to supercritical carbon dioxide in tubes with mixed convection[J]. High Pressure Chemical Engineering, 1996, 12: 199-204.
  • 8李志辉,姜培学.低雷诺数条件下超临界压力CO_2换热实验研究[J].核动力工程,2010,31(1):33-37. 被引量:10
  • 9赵陈儒,姜培学.冷却条件下管内超临界压力CO2对流换热研究[J].工程热物理学报,2009,30(3):456-460. 被引量:3
  • 10LEMMON E W, HUBER M L, MCLINDEN M O. Reference fluid thermodynamic and transport properties (REFPROP), VersionS. 0 [DB/CD]// NIST Standard Reference Database 23. USA.. Na- tional Institute of Standard and Technology, 2007.

二级参考文献32

  • 1张宇,姜培学,石润富,邓建强.竖直圆管中超临界压力CO_2对流换热实验研究[J].工程热物理学报,2006,27(2):280-282. 被引量:10
  • 2W B Hall. Heat Transfer Near the Critical Point. Ad- vances in Heat Transfer, 1971, 7:1- 85.
  • 3B S Petukhov. Heat Transfer and Friction in Turbulent Pipe Fiow with Variable Physical Properties. Advances in Heat Transfer, 1970, 6:503-564.
  • 4A F Polyakov. Heat Transfer under Supercritical Pressures. Advances in Heat Transfer, 1991, 21:1- 53.
  • 5Krasnoshchekov E A, Protopopov V S. Experimental Study of Heat Exchange in Carbon Dioxide in the Super- critical Range at High Temperature Drops (in Russian). Teplofizika Vysokikh Temperature, 1966, 4(3): 389 398.
  • 6Baskov V L, I V Kuraeva, V S Protopopov. Heat Transfer with the Turbulent Flow of a Liquid at Supercritical Pressure in Tube under Cooling Condition. Teplofizika Vysokikh Temperature, 1977, 15(1): 96 -102.
  • 7Additional Turbulence Models in FLUENT. Fluent Inc Jan., 2003.
  • 8SHITSMAN M E. Impairment of the heat transmission at supercritical pressures[J].High Temperature, 1963, 1: 237-244.
  • 9KRASNOSHCHEKOV E A, PROTOPOPOV V S. Experimental study of heat exchange in carbon dioxide in the supercritical range at high tempera ture drops (in Russian)[J]. Teplofizika Vysokikh Temperature, 1963, 4(3): 389-398.
  • 10JACKSON J D, COTTON M A, AXCELL B P.Studies of mixed convection in vertical tubes[J]. Int J Heat Fluid Flow, 1989, 10 (1): 2-15.

共引文献25

同被引文献74

引证文献11

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部