期刊文献+

具有庇护所与收获效应的Rosenzweig型捕食食饵模型

Study on Rosenzweig Predator-prey System with Prey Refuges and Harvesting
下载PDF
导出
摘要 研究了同时具有庇护所与收获效应的Rosenzweig型捕食食饵模型的动力学行为,讨论了模型平衡点的存在性、局部稳定性、全局稳定性及极限环的存在性,最后应用Pontryagin最大值原理给出了模型的最优捕获策略. The ting in their sp the global stab dynamic behaviors of a Rosenzweig ecies are investigated in this paper. predator-prey system with refuges and harves ility and the existence of limit cycle The existence of equilibrium, local stability, are discussed. The optimal harvest policy is given by using Pontryagin's maximal principle.
作者 朱婕 栗永安
出处 《淮海工学院学报(自然科学版)》 CAS 2013年第3期4-7,共4页 Journal of Huaihai Institute of Technology:Natural Sciences Edition
关键词 捕食食饵模型 R型功能反应 庇护所效应 收获效应 predator-prey system l Rosenzweig functional response~ prey refuge~ harvesting
  • 相关文献

参考文献9

  • 1CHEN Fengde. Stability analysis of a prey-predator model with Holling type III response function incorpo- rating a prey refuge[J]. Applied Mathematics and Computation, 2006, 182: 672-683.
  • 2CHEN Fengde. Global analysis of a harvested preda- tor-prey model incorporating a constant prey refuge [J]. International Journal Biomath, 2010, 3(2): 205- 223.
  • 3CHEN Fengde. Qualitative analysis of a predator-prey model with Holling type II functional response incor- porating a constant prey refuge[J]. Nonlinear Analysis Real World Applications, 2010, 11: 246-252.
  • 4HESAARAKI M, MOGHADAS S M. Existence of limit cycles for predator-prey systems with a class of functional responses[J]. Ecological Model, 2001, 142 (1-2): 1-9.
  • 5PONTRYAGIN L S, BOLTYONSKII W G, GAMKRELIDRE R V, et al. The Mathematical The- ory of Optimal Processes [M]. New York: Wiley, 1962.
  • 6KUMAR K T. Modeling and analysis of a harvested prey-predator system incorporating a prey refuge[J].Applied Mathematics and Computation, 2006, 185: 19-33.
  • 7王海龙.具有庇护所与收获效应的Holling型捕食者食饵模型研究[D].兰州:兰州大学,2010.
  • 8马知恩,周义仓.常微分方程定性与稳定性方法[M].北京:科学出版社,2007.
  • 9黄兴华,高超.一类具有时滞捕捞项的比率依赖模型的稳定性与分支分析[J].淮海工学院学报(自然科学版),2011,20(2):5-8. 被引量:3

二级参考文献7

  • 1XIAO Dongmei,Ll Wenxiao HAN Maoan. Dynamics in a ratio-dependent predator-prey model with predator harvesting[J]. Journal of Mathematical Analysis and Application, 2006,324 : 14-29.
  • 2XIAO Min, CAO Jinde. Hopf bifurcation and non-hyperbolic equilibrium in a ratio-dependent predator-prey model with linear harvesting rate: analysis and computation[J]. Mathematical and Computer Modelling, 2009,50:360-379.
  • 3PEI Yongzhen,LI Changguo,CHEN Lansun. Continuous and impulsive harvesting strategies in a stagestructured predator-prey model with time delay[J]. Mathematics and Computers in Simulation, 2009, 79:2994-3008.
  • 4KAR T K. Selective harvesting in a prey-predator fishery with time delay [J]. Mathematical and Computer Modelling, 2003,38 : 449-458.
  • 5GAN Qintao,XU Rui, YANG Pinghua. Bifurcation and chaos in a ratio-dependent predator-prey system with time delay[J]. Chaos, Solitons and Fractals, 2009,39 : 1883-1895.
  • 6RUAN Shigui, WEI Junjie. On the zeros of transcendental functions with applications to stability of delay differential equations with two delays[J]. Dynamics of Continuous, Discrete and Impulsive Systems, 2003,10 : 863-874.
  • 7HASSARD B D, KAZARINOFF N D, WAN Y H. Theory and Applications of Hopf Bifurcation[M]. Cambridge: Cambridge University Press, 1981.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部