期刊文献+

基于OD与LHS的复杂作用关系制造过程的计算机实验方法

An OD and LHS Based Computer Experiments Approach for Complex Relationship Manufacturing Process
下载PDF
导出
摘要 计算机仿真和计算机实验方法是自动化加工过程常用的产品设计和质量优化技术。文章针对输入因子与输出特性之间存在复杂非线性作用关系的制造过程,提出一种基于正交设计(OD)与超拉丁方抽样(LHS)的两阶段计算机实验方法。首先利用OD粗略探知出输出特性变化较大的子区域;而后在该子区域内采用LHS来安排实验点,获取样本集;最后利用Kriging模型建立起过程的全局性模型。理论与仿真研究表明,与传统的LHS设计相比,所提方法的实验点的分布可随输出特性的变化而调整,其拟合模型的预测性能也有较大幅度的提高,说明了方法的有效性。 Computer simulation and computer experiments are the main techniques of product design and quality optimization in automatic manufacturing processes. For the manufacturing processes featured with the complex nonlinear relationship between input factors and output characteristics, this paper proposed a two-stage computer experiments approach based on orthogonal design (OD) and Latin hypercube sam- piing (LHS). Firstly, OD is used to roughly detect the significant fluctuation domains of the output; Secondly, LHS is used in these domains to obtain the sample set; finally, the global fitting model is set up by Kriging method. Theoretical and simulation studies show that, compare with traditional LHS, the distribution of the experimental points can adjust according to the fluctuations of the output, and the pre- diction performance of the fitting model is increased obviously as well. All of these demonstrate the ef- fectiveness of the orooosed aooroach.
作者 崔庆安
出处 《组合机床与自动化加工技术》 北大核心 2013年第9期1-4,8,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家自然科学基金资助项目(71171180)
关键词 计算机实验 实验设计 复杂作用关系 正交设计 超拉丁方抽样 computer experiments design of experiments complex influential relationship orthogonaldesign latin hypercube sampling
  • 相关文献

参考文献10

  • 1冯吉路,姜增辉.基于ABAQUS高速切削Ti-6Al-4V切削状态的有限元仿真[J].组合机床与自动化加工技术,2013(2):47-49. 被引量:13
  • 2Pronzato, L., M? ller, W., Design of Computer Experi- ments: Space Filling and Beyond[ J]. Statistics and Compu- ting, 2012,22(3) :681 -701.
  • 3Zhou, X. , Ma, Y. , Tu, Y. , et al. , Ensemble of Surro- gates for Dual Response Surface Modeling in Robust Parame- ter Design[ J]. Quality and Reliability Engineering Interna- tional, 2013,29(2) :173 - 197.
  • 4陈巍,周雄辉,张汝珍,韩先洪,王会凤.基于Kriging代理模型的注塑产品翘曲优化[J].上海交通大学学报,2010,44(4):588-592. 被引量:13
  • 5Deng, H. , Shao, W. , Ma, Y. , et al. , Bayesian Meta- modeling for Computer Experiments Using the Gaussian Kriging Models[ J]. Quality and Reliability Engineering In- ternational, 2012,28 (4) :455 - 466.
  • 6Can, B. , Heavey, C. , A Comparison of Genetic Program- ruing and Artificial Neural Networks in Metamodeling of Dis- crete-Event Simulation Models [ J]. Computers & Op- erations Research, 2012,39 ( 2 ) :424 - 436.
  • 7崔庆安.面向多极值质量特性的全局式序贯性实验设计方法[J].系统工程理论与实践,2012,32(10):2143-2153. 被引量:7
  • 8Gramacy, R. B., Poison, N. G., Particle Learning of Gaussian Process Models for Sequential Design and Optimi- zation[ J]. Journal of Computational and Graphical Statis- tics, 2011,20(1) :102 -118.
  • 9Dam, E. R. v. , Hertog, D. d. , Husslage, B. G. M. , et al., Space-Filling Latin Hypereube Designs for Computer Experiments[J]. Optimization and Engineering, 2011,12 (4) :611 -630.
  • 10Fang, K. -T. , Lin, D. K. J. , Uniform Design in Computer and Physical Experiments [ M ]. in The Grammar of Tech- nology Development, 2008:105 - 125.

二级参考文献22

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部