期刊文献+

采用不同气相燃烧模型模拟含硼燃气扩散燃烧过程 被引量:16

Numerial simulation on boron-based gas diffusion combustion by different gaseous combustion models
下载PDF
导出
摘要 为解决固冲发动机补燃室中含硼富燃燃气湍流扩散燃烧模型选择问题,以设计的平行进气燃烧装置为物理模型,以King点火模型与L-W燃烧模型为硼粒子点火和燃烧模型,湍流燃烧分别采用有限速率/涡耗散模型、涡耗散模型、有限速率模型,采用数值模拟方法对其燃烧过程进行数值模拟,获得了理想的含硼燃气湍流扩散燃烧的火焰结构、流场规律,得到不同燃烧模型下的燃烧特性。不同湍流燃烧机理对气相燃烧过程和颗粒相燃烧过程存在影响不同。不同影响的内在机理说明,燃烧模型模拟不同过程时存在能力差异。对于气相反应的模拟,涡耗散模型最剧烈,有限速率/涡耗散模型次之,有限速率模型最缓慢;对于硼粒子点火反应,有限速率/涡耗散模型最剧烈,有限速率模型次之,涡耗散模型最缓慢;对于硼粒子燃烧反应,涡耗散模型最快,有限速率模型次之,有限速率/涡耗散模型最缓慢。 For selection of boron-based fuel-rich gas turbulent diffusion combustion model in solid ramjet rocket secondary com- bustion chamber, parallel intake combustion apparatus was designed as physical model. On foundation of boron particles King igni- tion model and L-W burning model, turbulent diffusion combustion process was simulated by numerical simulation methods which a- dopted Finite-Rate/Eddy-Dissipation model, Eddy-Dissipation model, Laminar Finite-Rate model respectively. Flame structure and flow field characteristics of turbulent diffusion combustion were acquired, and combustion characteristics of different combustion models were obtained. Different turbulent combustion mechanisms have different influence on gaseous combustion process and parti- cle combustion process, and inherent mechanism of different influence reveals that combustion model has different ability to simulate different process. The most intensity of gas phase reactor simulation is Eddy-Dissipation model ,followed by Finite-Rate/Eddy-Dissi- pation model, and Laminar Finite-Rate model is the slowest;when boron particle ignition reaction is simulated, Finite-Rate/Eddy- Dissipation model is the most dramatic, followed by Laminar Finite-Rate model, and Eddy-Dissipation model is the slowest; but Eddy-Dissipation model is the fastest for boron particle combustion reaction, followed by Laminar Finite-Rate model, and Finite- Rate/Eddy-Dissipation model is the slowest.
出处 《固体火箭技术》 EI CAS CSCD 北大核心 2013年第4期474-480,共7页 Journal of Solid Rocket Technology
关键词 固体冲压发动机 含硼富燃燃气 湍流燃烧 数值模拟 solid ramjet rocket boron-based fuel-rich gas turbulent combustion numerical simulation
  • 相关文献

参考文献12

  • 1张炜,朱慧,方丁酉,张为华.冲压发动机发展现状及其关键技术[J].固体火箭技术,1998,21(3):24-30. 被引量:45
  • 2Macek A, Semple J. Combustion of boron particles at atmospheric pressure [J]. Combustion Science and Technology, 1969, 1(3): 181-191.
  • 3King M K. Boron particle ignition in hot gas streams [ J ]. Combustion Science and Technology, 1974, 8 (4) : 243-255.
  • 4King M K. Ignition and Combustion of boron particles and clouds [ J ]. Journal of Spacecraft and Rockets, 1982, 19 (4) : 294-306.
  • 5Yeh C L, Kuo K K. Ignition and combustion of boron parti- cles[ J]. Progress in Energy and Combustion Science, 1996, 22(6) : 511-541.
  • 6Makion A, Law C K. A simplified model for the combustion of uncoated boron particles [ J ]. Combustion Science and Technology, 1988, 61(4-6) : 155-168.
  • 7Li S C, Williams F A. Ignition and combustion of boron par- ticles combustion of boron-based solid propellant and solid fuels[M]. Boca Raton, FL, CRC Press, Inc. ,1993: 248- 271.
  • 8胡建新,夏智勋,罗振兵,缪万波,郭健,赵建民.固体火箭冲压发动机补燃室内硼颗粒点火计算研究[J].含能材料,2004,12(6):342-345. 被引量:11
  • 9敖文,杨卫娟,韩志江,刘建忠,周俊虎,岑可法.硼颗粒点火燃烧模型研究进展[J].固体火箭技术,2012,35(3):361-366. 被引量:13
  • 10Fluent Inc. Fluent user's guide[M], http://ceclub, cn. 2010.

二级参考文献40

  • 1[3]King M K . Boron ignition and combustion in air-augmented rocket afterburner[ J]. Combustion Science and Technology, 1972, 5( 1 ) :155 - 164.
  • 2[4]King M K. Boron particle ignition in hot gas streams [ J ].Combustion Science and Technology, 1974, 8( 1 ) :255 -273.
  • 3[5]Mohan,Williams F A. Ignition and combustion of boron in O2/Inert atmosphere [ J ]. AIAA Journal, 1972, 6 ( 2 ):776 - 783.
  • 4[6]Li S C,Williams F A. Ignition and combustion of particles[ A]. In: Kuo K K ed. Combustion of boron based solid propellants and solid fuels [ C ], Boca Raton: Begell House/CRC Press, 1993,248 - 271.
  • 5Hussmann Bjorn, Pfitzner Michael. Extended combustion model for single boron particles-Part I :Theory [J]. Combus- tion and Flame, 2010,157 (4) : 803-821.
  • 6Hussmann Bjorn, Pfitzner Michael. Extended combustion model for single boron particles-Part II: Validation [J]. Combustion and Flame ,2010,157 (4) :822-833.
  • 7Macek A, Semple J. Combustion of boron particles at atmos- pheric pressure[J]. Combustion Science and Technology, 1969,1(3) :181-191.
  • 8King M K. Boron ignition and combustion in air-augmented rocket afterburners[J]. Combustion Science and Technology, 1972,5(4) :155-158.
  • 9King M K. Boron particle ignition in hot gas streams[J]. Combustion Science and Technology, 1974, 8 ( 5-6 ) : 255-273.
  • 10King M K. Ignition and combustion of boron particles and clouds[J]. Journal of Spacecraft and Rockets, 1982,19 (4) : 294 -306.

共引文献63

同被引文献83

引证文献16

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部