期刊文献+

气流速度对晶体硼颗粒热氧化及点火燃烧特性的影响 被引量:2

Effect of airflow velocity on thermal oxidation and combustion characteristics of crystalline boron particles
下载PDF
导出
摘要 利用热天平与激光点火装置,研究了不同气流速度下硼颗粒的热氧化特性和点火燃烧特性,在此基础上分析了对流换热对其影响规律。研究结果表明,气流速度对硼氧化反应的作用主要体现在对流换热项及扩散控制项两方面。气流速度对硼颗粒的点火燃烧过程的影响是双方面的。在流速较低时,其增大将促进硼颗粒的点火和燃烧,此时起主导作用的是氧扩散过程。随着流速的增加,对流换热对硼氧化反应的影响逐渐体现,超过某一程度后,其增大则不利于硼颗粒的点火和燃烧。研究还发现,硼颗粒的燃烧效率随气流速度的增大而增大,推测硼颗粒的燃烧效率的主要影响因素是氧扩散过程。 The thermal oxidation together with ignition and combustion characteristics of crystalline boron particles under differ- ent airflow velocity were studied by means of thermogravimetry analysis and a laser ignition apparatus. The effect of heat convection was analyzed based on experimental results. The results reveal that influence of airflow velocity on oxidizing reaction is mainly re- fleeted in form of heat convection and diffusion eontrol. The influence mechanism of airflow velocity on the ignition and combustion process is complex. When at a low level, the increase of airflow velocity promotes the ignition and combustion process, which is limited by oxygen diffusion process. As the velocity increases, the influence of heat convection on the boron oxidation process is gradually strengthened. When exceeding a certain value, the inerease of airflow velocity isnt benefit to the ignition and combustion. The results also show that combustion efficiency of boron particles increases monotonically as the airflow velocity increases. It is in- ferred that the combustion efficiency is mainly limited by oxygen diffusion process.
出处 《固体火箭技术》 EI CAS CSCD 北大核心 2013年第4期511-515,共5页 Journal of Solid Rocket Technology
基金 国家自然科学基金资助项目(51106135) 中国博士后科学基金资助项目(20110491769) 中央高校基本科研业务费专项资金资助(2012FZA4014)
关键词 热重 点火 燃烧 boron thermogravimetry ignition combustion
  • 相关文献

参考文献12

  • 1King M K. Boron ignition and combustion in air-augmented rocket afterburners [ J ]. Combustion Science and Technology, 1972,5 (4) : 155-164.
  • 2Mohan G, Williams F A. Ignition and combustion of boron in O2-inert atmospheres [ J ]. AIAA Journal, 1972,10 ( 6 ) : 776- 783.
  • 3Ishikawa N, Matsumoto H, Mitsuno M, et al. Combustion of boron powders through bunsen flame [ J ]. AIAA Journal, 1985,23 (8) : 1201-1201.
  • 4Young G,Sullivan K,Zachariah M R,et al. Combustion char- acteristics of boron nanoparticles [ J ]. Combustion and Flame ,2009,156 (2) :322-333.
  • 5Macek A, Semple J. Combustion of boron particles at atmos- pheric pressure [ J ]. Combustion Science and Technology, 1969,1(3) :181-191.
  • 6Yoshida T, Yuasa S. Effect of water vapor on ignition and combustion of boron lumps in an oxygen stream [ J ]. Pro- ceedings of the Combustion Institute,2000,28:2735-2741.
  • 7Ulas A, Kuo K K, Gotzmer C. Ignition and combustion of bo- ron particles in fluorine-containing environments [ J ]. Combustion and Flame,2001,127 (1-2) : 1935-1957.
  • 8Ulas A, Kuo K K, Gotzmer C. Effects of fluorine-containing species on the ignition and combustion of boron particles : ex- periment and theory[J]. Combustion of Energetic Materials, 2002:453-463.
  • 9Li S C, Williams F A. Ignition and combustion of boron in wet and dry atmospheres, in twenty-third symposium ( inter- national) on combustion/the combustion institute [ R ]. 1990 : Orleans, France: 1147-1154.
  • 10Yeh C L, Kuo K K. Ignition and combustion of boron particles [ J ]. Progress in Energy and Combustion Science, 1996,22(6) :511-541.

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部