期刊文献+

一类混杂系统的模型辨识

Model Identification of A Class of Hybrid Systems
下载PDF
导出
摘要 针对一类具有切换结构的混杂系统,提出一种基于仿射传播聚类的模型辨识方法。将模型辨识问题等价成对系统数据的分类和分类数据的回归问题。通过仿射传播聚类算法对样本数据进行聚类划分,并分别采用最小二乘支持向量机算法对子样本分别建立模型。仿真结果验证了该方法的有效性和实用性。 For a class of hybrid systems with the switched form, a model identification method based on affinity propagation clustering is presented. In this method, the model identification is- sue is equivalent to the problems of classification of the system data and regression of the classifi- cation data. The affinity propagation clustering algorithm is successively applied to group the da- ta into clusters, and least squares support vector machines is used to construct sub -model. Simulation results show the effectiveness and feasibility of the proposed method.
出处 《大连民族学院学报》 CAS 2013年第5期547-550,共4页 Journal of Dalian Nationalities University
基金 中央高校基本科研业务费专项资金资助项目(DC120103070)
关键词 切换系统 仿射传播聚类 最小二乘支持向量机 switched systems affinity propagation clustering least squares support vector ma-chines
  • 相关文献

参考文献14

  • 1MA Y, VIDAL R. Identification of deterministic switched ARX systems via identification of algebraic va- rieties. In:Morari[ J]. M, 2005,3414:449 -465.
  • 2ROLL J, BEMPORAD A, LJUNG L. Identification of piecewise affine systems via mixed - integer program- ming[J]. Automafica, 2004,40:37-50.
  • 3BEMPORAD A, GARULLI A, PAOLETTI S, et al. A bounded- error approach to piecewise affine system i- dentification[J]. IEEE Trans. On Automatic Control, 2005,50(10) : 1567 - 1580.
  • 4JULOSKI A L, WEILAND S, HEEMELS W. A bayes- ian approach to identification of hybrid systems [ J ]. IEEE Trans. on Automatic Control, 2005,50 (10) : 1520 - 1533.
  • 5FERRARI - TRECATE G, MUSELLI M, LIBERARI D, et al. A clustering technique for the identification of piecewise affine systems [ J ]. Automatica 2003,39 : 205 - 217.
  • 6PETRIDIS V, KEHAGIAS A. Identification of switched dynamical systems using muhiple models[ C] //Proceed- ings of the 37th IEEE Conference on Decision&Control Tampa, 1998: 199-204.
  • 7VERRIEST E I, MOOR B D. Multi - mode system i- dentification [ Z ]. New York : In Proceedings of the Eu- ropean Control Conference (ECC99), 1999.
  • 8李卫,杨煜普,王娜.基于核模糊聚类的多模型LSSVM回归建模[J].控制与决策,2008,23(5):560-562. 被引量:31
  • 9潘天红,薛振框,李少远.基于减法聚类的多模型在线辨识算法[J].自动化学报,2009,35(2):220-224. 被引量:21
  • 10徐海霞,刘国海,周大为,梅从立.基于改进核模糊聚类算法的软测量建模研究[J].仪器仪表学报,2009,30(10):2226-2231. 被引量:23

二级参考文献30

  • 1李侃,刘玉树.模糊核聚类的自适应算法[J].控制与决策,2004,19(5):595-597. 被引量:9
  • 2孔锐,张国宣,施泽生,郭立.基于核的K-均值聚类[J].计算机工程,2004,30(11):12-13. 被引量:46
  • 3薛振框,李少远.MIMO非线性系统的多模型建模方法[J].电子学报,2005,33(1):52-56. 被引量:18
  • 4薛振框,李少远.一种基于加权性能指标的多模型辨识算法及其在热工过程中的应用[J].自动化学报,2005,31(3):470-474. 被引量:3
  • 5Mohan B M, Sinha A. Analytical structure and stability analysis of a fuzzy PID controller. Applied Soft Computing, 2008, 8(1): 749-758.
  • 6Angelov P P, Lughofer E. A comparative study of two approemhes for data-driven design of evolving fuzzy systems: eTS and FLEXFIS. International Journal on General Systems, 2008, 37(1): 45-67.
  • 7Angelov P P, Filev D P. An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Transactions on Systems, Man, and Cybernetics, 2004, 34(1): 484-498.
  • 8Gregorcic G, Lightbody G. Local model network identification with Gaussian processes. IEEE Transactions on Neural Networks, 2007, 18(5): 1404-1423.
  • 9Chiu S L. Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems, 1994, 2(3): 267-278.
  • 10Ramirez R G. Overall Intelligent Hybrid Control System for a Fossil-fuel Power Unit [Ph.D. dissertation], The Pennsylvania State University, USA, 2000.

共引文献207

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部