期刊文献+

五轴铣削加工刀具磨损状态监测研究 被引量:7

A Research on the Condition Monitoring of the Tool Wear in Five Axis Milling Machining
下载PDF
导出
摘要 随着加工零件的日益复杂,加工要求的不断提高,实际加工时的刀具状况已经成为限制加工质量进一步提高的重要因素。在五轴铣削加工时为了更好的监测刀具的磨损状况,文章对目前的刀具监测方法进行了分析,并建立了五轴铣削加工时平头立铣刀磨损状态监测系统。最后通过实验提出了用刀具的径向力与切向力比值作为监测刀具磨损状态的方法。 With the parts increasingly complex and the processing requirement enhances unceasingly,the actual processing of tool condition has become the important factors that restrict further improve the processing quality. When the five axis milling in order to better monitoring the tool wear status, the current tool monitoring methods are analyzed in this paper, and when the five axis milling set up the monitor system of the tool wear status. Finally, suggest utilize the tool of radial force and tangential force ratio as monitoring the tool wear state method through the experiment.
出处 《组合机床与自动化加工技术》 北大核心 2013年第8期69-72,76,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家自然科学基金项目(50675002) 国家自然科学基金项目(51075078)
关键词 刀具磨损 监测 铣削 切削力比值 tool wear monitoring milling cutting force
  • 相关文献

参考文献10

  • 1F. Girardin, D. R emond, J.-F. Rigal, A NEW METHOD FOR DETECTING TOOL WEAR AND BREAKAGE IN MILLING, Int J Mater Form 2010,3(1) :463 -466.
  • 2张宝金,宋书善,陈明.基于刀具状态的切削力模型研究[J].工具技术,2010,44(2):27-30. 被引量:4
  • 3李锡文,杨明金,谢守勇,杨叔子.基于时域特性的铣刀磨损状态信息提取[J].中国机械工程,2007,18(13):1513-1517. 被引量:5
  • 4冀玉梅.基于伺服电流与切削力关系模型的自适应数控技术研究[D].济南大学.
  • 5韦江波.刀具磨损在线监测技术的探讨[J].柳州职业技术学院学报,2011,11(3):55-58. 被引量:2
  • 6T. Matsumura. TShirakashi. E. Usui. Identification of Wear Characteristics in Tool Wear Model of Cutting Process. Int. J Mater From ( 2008 ) Suppl 1 : 555 - 558.
  • 7Mei Wang & Jie Wang. CHMM for tool condition monitoring and remaining useful life prediction. Int J Adv Manuf Techn- ol. 19 July 2011.
  • 8高宏力,许明恒,傅攀.基于集成神经网络的刀具磨损量监测[J].西南交通大学学报,2005,40(5):641-644. 被引量:8
  • 9Jacob C. Chen Joseph C. Chen. An artificial-neural-net- works-based in-process tool wear prediction systemin milling operations. Int J Adv Manuf Technol, 2005,25:427 -434.
  • 10C. Scheffer. H. Engelbrecht. P. S. Heyns, A comparative evaluation of neural networks and hidden Markov models for monitoring turning tool wear, Neural Comput & Applic, 2005,14:325-336.

二级参考文献18

  • 1翁德玮,邵华,王海丽.多传感器刀具状态监控系统[J].机械制造,2004,42(6):11-14. 被引量:6
  • 2张昆,宋千,郝晓红.金属切削刀具磨损的监控和预报研究[J].中国机械工程,1994,5(6):61-62. 被引量:7
  • 3金成哲,贾春德.基于车铣技术的刀具磨损和破损分析[J].中国机械工程,2006,17(14):1456-1459. 被引量:10
  • 4R Uehara, F Kiyosawa. Automatic tool wear monitoring in NC turning[ J]. CIRP, 1989,38( 1 ): 39 - 42.
  • 5Dimla E, Dimla S. Sensor signals for tool-wear monitoring in metal cutting operations--a review of methods [ J ]. International Journal of Machine Tools & Manuiacture, 2000(40): 1073 - 1098.
  • 6王信义,董卫平,等.生产系统中的监控检测技术[M].北京:北京理工大学出版社,2002.
  • 7Dornfeld D A, Rangwala S.Integration of sensor via neural networks for the detection of tool wear states[J]. ASME Winter Annual Meeting, 1987. 109-120.
  • 8Issam Abu-Mahfouz. Drilling wear detection and classification using vibration signals and artificial neural network[J]. International Journal of Machine Tools & Manufacture, 2003, 43: 707-720.
  • 9Tugrul O Z, Abhijit N. Prediction of flank wear by using back propagation neural network modeling when cutting hardened H-13 steel with chamfered and honed CBN tools[J]. International Journal of Machine Tools & Manufacture, 2002, 42: 287-297.
  • 10Bernhard S.On-line and indirect tool wear monitoring in turning with artifcial neural networks: a review of more than a decade of research[J]. Mechanical Systems and Signal Processing, 2002, 16(4): 487-546.

共引文献15

同被引文献35

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部