期刊文献+

圈的中间图pebbling数和Graham猜想 被引量:2

Pebbling numbers of middle graphs of cycles and Graham's conjecture
下载PDF
导出
摘要 图G的一个pebbling移动是从一个顶点移走2个pebble,而把其中的1个pebble移到与其相邻的一个顶点上.图G的pebbling数f(G)是最小的正整数n,使得不论n个pebble如何放置在G的顶点上,总可以通过一系列的pebbling移动,把1个pebble移到图G的任意一个顶点上.图G的中间图M(G)就是在G的每一条边上插入一个新点,再把G上相邻边上的新点用一条边连接起来的图.对于任意两个连通图G和H,Graham猜测f(G×H)≤f(G)f(H).首先研究了圈的中间图的pebbling数,然后讨论了一些圈的中间图满足Graham猜想. A pebbling move on a graph G consists of taking two pebbles off one vertex and placing one pebble on an adjacent vertex. The pebbling number of a connected graph G, denoted by f(G), is the least n such that any distribution of n pebbles on G allows one pebble to be moved to any specified, but arbitrary vertex by a sequence of pebbling moves. The middle graph M(G) of a graph G is the graph obtained from G by inserting a new vertex into every edge of G and by joining by edges those pairs of these new vertices which lie on adjacent edges of G. For any connected graphs G and H, Graham conjectured that f(G × H) ≤ f(G)f(H). In this paper, we show the pebbling numbers of middle graphs of cycles, and discuss that Graham's conjecture holds for middle graphs of some cycles.
出处 《运筹学学报》 CSCD 北大核心 2013年第3期35-44,共10页 Operations Research Transactions
基金 国家自然科学基金(No.10971248) 安徽省科技厅自然科学基金(No.1208085QF119) 安徽省教育厅自然科学基金(Nos.KJ2013Z279 KJ2011B152 KJ2012B166 2011SQRL070)
关键词 GRAHAM猜想 中间图 PEBBLING数 Graham's conjecture, cycles, middle graphs, pebbling number
  • 相关文献

参考文献9

  • 1Chung F R K. Pebbling in hypercubes [J]. SIAMJ. Discrete Mathematics, 1989, 2(4): 467-472.
  • 2Akiyama J, Hamada T, Yoshimura I. Miscellaneous properties of middle graphs [J]. TR U Math, 1974, 10: 41-53.
  • 3Pacbter L, Snevily H S, Voxman B. On pebbling graphs [J]. Congressus Numerantium, 1995, 107: 65-80.
  • 4Feng R Q, Kim J Y. Pebbling numbers of some graphs [J]. Science in China (Series A), 2002, 45(4): 470-478.
  • 5.Feng R Q, Kim J Y. Graham' s pebbling conjecture of production complete bipartite graph [J]. Science in China (Series A), 2001, 44(7): 817-822.
  • 6Ye Y S, Zhai M Q, Zhang Y. Pebbling number of squares of odd cycles [J]. Discrete Math, 2012, 312(21): 3174-3178.
  • 7Ye Y S, Zhang P F, Zhang Y. The pebbling number of squares of even cycles [J]. Discrete Math, 2012, 312(21): 3203-3211.
  • 8刘海英,秦琼,王志平,马永刚.中间图的pebbling数[J].大连海事大学学报,2006,32(4):125-128. 被引量:5
  • 9Snevily H S, Foster J A. The 2-pebbling property and conjecture of Graham's [J]. Graphs Combinatorics, 2000, 16: 231-244.

二级参考文献1

共引文献4

同被引文献5

  • 1刘海英,秦琼,王志平,马永刚.中间图的pebbling数[J].大连海事大学学报,2006,32(4):125-128. 被引量:5
  • 2CHUNG F R K.Pebblingin hypercubes[J]. SIAMJ Discrete Math, 1989,2(4):467-472.
  • 3AKIYAMA J, HAMADA T, YOSHIMURA I. Miscellaneous properties of middle graphs [ J ]. TRU Math, 1974, 10: 41-53.
  • 4PACHTER L,SNEVILY H S,VOXMAN B. On pebbling graphs[J]. Congressus Numerantium, 1995,107:65-80.
  • 5FENG R Q,KIM J Y.Pebbling numbers of some graphs[J]. Science in China(Series A),2002,45(4):470-478.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部