期刊文献+

非Hermite正定线性代数方程组的两参数预处理NSS方法(英文) 被引量:2

Two-parameter preconditioned NSS method for non-Hermitian and positive definite linear systems
下载PDF
导出
摘要 对大型稀疏的非Hermite正定线性代数方程组,运用正规和反Hermite分裂(normal and skew-Hermitian splitting,NSS)迭代技巧,提出了一种两参数预处理NSS迭代法,它实际上是预处理NSS方法的推广.理论分析表明,新方法收敛于线性方程组的唯一解.进一步地,推导了出现于新方法中的两个参数的最优选取,计算了对应的迭代谱的上界的最小值.新方法的实际实施中,还将不完全LU分解和增量未知元选做了两类预处理子.数值结果对所给方法的收敛性理论和有效性予以了证实. By using the normal and skew-Hermitian splitting (NSS) iteration technique for large sparse non-Hermitian and positive definite linear systems, a two-parameter preconditioned NSS iteration, which gives the actually generalized form of the preconditioned NSS method is proposed. Theoretical analysis shows that the new iterative method converges to the unique solution of the linear system. Moreover, the optimal choice of two parameters involved in the new method and the corresponding minimum value for the upper bound of the iterative spectrum are derived and computed. For the actual implementation of this method, the in- complete LU (ILU) decomposition and the incremental unknowns (IUs) are chosen as two types of the preconditioners. Numerical results confirm the analysis of the convergence theory and the effectiveness of the proposed method.
出处 《应用数学与计算数学学报》 2013年第3期322-340,共19页 Communication on Applied Mathematics and Computation
基金 Project supported by the National Basic Research Program of China(973 Program,2011CB706903) the Natural Science Foundation of Jilin Province of China(201115222)
关键词 正规和反Hermite分裂 正定线性方程组 增量未知元 不完全LU分解 预处理 normal and skew-Hermitian splitting positive definite linear system incremental unknown incomplete LU (ILU) decomposition preconditioner
  • 相关文献

参考文献18

  • 1Golub G H, Van L C. Matrix Computations [M]. 3rd ed. Baltimore: The Johns Hopkins University Press, 1996.
  • 2Yang A L, An J, Wu Y J. A generalized preconditioned HSS method for non-Hermitian positive definite linear systems [J]. Appl Math Comput, 2010, 216: 1715-1722.
  • 3Bai Z Z, Golub G H, Ng M K. Hermitian and skew-Hermitian splitting methods for non- Hermitian positive definite linear systems [J]. SIAM J Matrix Anal Appl, 2003, 24: 603-626.
  • 4Li L, Huang T Z, Liu X P. Asymmetric Hermitian and skew-Hermitian splitting methods for positive definite linear systems [J]. Comput Math Appl, 2007, 54: 147-159.
  • 5Bai Z Z, Golub G H, Ng M K. On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations [J]. Numer Linear Algebra Appl, 2007, 14: 319-335.
  • 6Bai Z Z, Golub G H, Lu L Z, Yin J F. Block triangular and skew-Hermitian splitting methods for positive definite linear systems [J]. SIAM J Sci Comput, 2005, 26(3): 844-863.
  • 7Bai Z Z, Golub G H, Li C K. Convergence properties of preconditioned Hermitian and skew- Hermitian splitting methods for non-Hermitian positive semidefinite matrices [J]. Math Com- put, 2007, 76: 287-298.
  • 8Bai Z Z, Golub G H, Pan J Y. Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems [J]. Numer Math, 2004, 98: 1-32.
  • 9Chen M, Temam R. Incremental unknowns for solving partial differential equations [J]. Numer Math, 1991, 59: 255-271.
  • 10Chen M, Temam R. Incremental unknowns in finite differences: condition number of the matrix [J]. SIAM J Matrix Anal Appl, 1993, 14: 432-455.

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部