期刊文献+

自交衰退新解 被引量:3

New Theory of Inbreeding Depression
下载PDF
导出
摘要 本文在综合基因组学、系统生物学、现代分子生物学最新发展的基础上,提出了遗传物质缺失致使自交衰退新假说。遗传物质缺失致使自交衰退假说认为:由于同源染色体遗传物质存在差异,存在差异的遗传物质在自交后有不存在于自交子代的可能,从而造成自交子代相对于亲本的遗传物质缺失,致使自交子代衰退。本文通过一个实例论证这一假说,并运用这一假说解释三个遗传学现象。最后,比较隐性有害基因纯合致使自交衰退和多基因平衡破坏致使自交衰退学说的错误,并从遗传物质缺失致使自交衰退的角度解析了杂种优势。 The hypothesis on deletion of the genetic material causing the inbreeding depression is put forward in the article on the basis of the new progress of the genomics, the system biology, the molecular biology. It is considered that: because the different the genetic material between the homologous chromosomes will not to be in selfed progeny after selfing, making the kinds of genetic material in selfed progeny less than parent, which lead to selfed progeny's Inbreeding depression. The hypothesis is confirm by an example, and three genetic phenomena are explained by this hypothesis. Finally, it compare the theories of the homozygous recessive deleterious gene's mistakes with destroying the balance of gene's mistakes, and the heterosis is analysised by the hypothesis on the deletion of the genetic material.
作者 王浩
出处 《分子植物育种》 CAS CSCD 北大核心 2013年第5期630-637,共8页 Molecular Plant Breeding
基金 贵州省科学技术基金(黔科合J字(2013)2003号)资助
关键词 假说 自交衰退 遗传物质缺失 隐性有害基因纯合 多基因平衡破坏 Hypothesis, Inbreeding depression, The deletion of the genetic material, The homozygous recessive deleterious gene, Destroying the balance of gene
  • 相关文献

参考文献31

  • 1Bentley D.R., Balasubramanian S., Swerdlow H.P., Smith G.P., Milton J., Brown C.G., Hall KIP., Evers D.J., Barnes C.L., Bignell H.R., Boutell J.M., Bryant J., Carter R.J., Keira Ch- eetham R., Cox A.J., Ellis D.J., Flatbush M.R., Gormley N. A., Humphray S.J., Irving L.J., Karbelashvili M.S., Kirk S. M., Li H., Liu X., Maisinger K.S., Murray L.J., Obradovic B., Ost T., Parkinson M.L., Pratt M.R., Rasolonjatovo I.M., Reed M.T., Rigatti R., Rodighiero C., Ross M.T., Sabot A., Sankar S.V., Scally A., Schroth G.P., Smith M.E., Smith V. P., Spiridou A., Torrance P.E., Tzonev S.S., Vermaas E.H., Walter K., Wu X., Zhang L., Alam M.D., Anastasi C., Aniebo I.C., Bailey D.M., Bancarz I.R., Banerjee S., Barbour S.G., Baybayan P.A., Benoit V.A., Benson K.F., Bevis C., Black P.J., Boodhun A., Brennan J.S., Bridgham J.A., Brown R.C., Brown A.A., Buermann D.H., Bundu A.A., Burrows J.C., Carter N.P., Castillo N., Chiara E Catenazzi M., Chang S., Neil Cooley R., Crake N.R., Dada O.O., Diakoumakos K.D., Dominguez-Femandez B., Earnshaw D.J., Egbujor U.C., Elmore D.W., Etchin S.S., Ewan M.R., Fedurco M., Fraser L.J., Fuentes Fajardo K.V., Scott Furey W., George D., Gietzen K.J., Goddard C.P., Golda G.S., Granieri P.A., Green D.E., Gustafson D.L., Hansen N.F., Harnish K., Haudenschild C.D., Heyer N.I., Hims M.M., Ho J.T., Horgan A.M., Hosch- ler K., Hurwitz S., Ivanov DV., Johnson M.Q., James T., Huw Jones T.A., Kang G.D., Kerelska T.H., Kersey A.D., Khrebtukova I., Kindwall A.P., Kingsbury Z., Kokko-Gonza- les P.I., Kumar A., Laurent M.A., Lawley C.T., Lee S.E., Lee X., Liao A.K., Loch J.A., Lok M., Luo S., Mammen R.M., Martin J.W., McCauley P.G., McNitt P., Mehta P., Moon K.W., Mullens J.W., Newington T., Ning Z., Ling Ng B., Novo S.M., O'Neill M.J., Osborne M.A., Osnowski A., Ostadan O., Paraschos L.L., Pickering L., Pike A.C., Pike A. C., Chris Pinkard D., Pliskin D.P., Podhasky J., Quijano V.J., Raczy C., Rae V.H., Rawlings S.R., Chiva Rodriguez A., Roe P.M., Rogers J., Rogert Bacigalupo M.C., Romanov N., Ro- mieu A., Roth R.K., Rourke N.J., Ruediger S.T., Rusman E., Sanches-Kuiper R.M., Schenker M.R., Seoane J.M., Shaw R.J., Shiver M.K., Short S.W., Sizto N.L., Sluis J.P., Smith M.A., Ernest Sohna Sohna J., Spence E.J., Stevens K., Sutton N., Szajkowski L., Tregidgo C.L., Turcatti G., Vandevondele S., Verhovsky Y., Virk S.M., Wakelin S., Walcott G.C., Wang J., Worsley G.J., Yan J., Yau L., Zuerlein M., Rogers J., Mu- llikin J.C., Hurles M.E., McCooke N.J., West J.S., Oaks F.L., Lundberg P.L., Klenerman D., Durbin R., and Smith A.J., 2008, Accurate whole human genome sequencing using reversible terminator chemistry, Nature, 456(7218): 53-59.
  • 2Boppenmaier J., Melchinger A.E., Seiltz G., Geiger H.H., and Herrmann R.G., 1993, Genetic diversity for RFLPs in Euro- pean maize inbreds HI, performance of crosses within versus between heterotic groups for grain traits, Plant Breeding, 111(3): 217-226.
  • 3Bruce A.B., 1910, The mendelian theory of heredity and augmen- tation of vigor, Science, 32(827): 627-628.
  • 4Bu D., Zhao Y., Cai L., Xue H., Zhu X., Lu H., Zhang J., Sun S., Ling L., Zhang N., Li G., and Chen R., 2003, Topological structure an alysis of the protein-protein interaction network in budding yeast, Nucleic Acids Res., 31 (9): 2443-2450.
  • 5陈润生.与生物信息学相关的两个前沿方向——非编码基因和复杂生物网络[J].生物物理学报,2007,23(4):290-295. 被引量:9
  • 6Clark R.M., Schweikert G., Toomajian C., Ossowski S., Zeller G., Shinn P., Warthmann N., Hu T.T., Fu G., Hinds D.A., Chen H., Frazer K.A., Huson D.H., Schijlkopf B., Nordborg M., Ratsch G., Ecker J.R., and Weigel D., 2007, Common sequ- ence polymorphisms shaping genetic diversity in Aro/bidop- sis thaliana, Science, 317(5836): 338-342.
  • 7ENCODE Project Consortium, 2007, Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project, Nature, 447(7146): 799-816.
  • 8Girard A., Sachidanandam R., Hannon G.J., and Carmell M.A., 2006, A germline-specific class of small RNAs binds mam- malian piwi proteins, Nature, 442(7099): 199-202.
  • 9Inada D.C., Bashir A., Lee C., Thomas B.C., Ko C., Goff S.A., and Freeling M., 2003, Conserved noncoding sequences in the grasses, Genome Res., 13(9): 2030-2041.
  • 10姬东华,薛亚东,郑用琏,陈景堂,黄亚群,王燕.玉米初级作图群体的籽粒性状遗传效应分析[J].华中农业大学学报,2013,32(4):1-5. 被引量:3

二级参考文献114

共引文献208

同被引文献38

  • 1毛小伟,陈小平.夏季设施化栽培秀珍菇的菌株比较试验[J].食药用菌,2012,20(2):90-91. 被引量:2
  • 2黄良水.无公害秀珍菇标准化栽培技术[J].中国食用菌,2004,23(6):23-24. 被引量:4
  • 3张金霞,黄晨阳,郑素月.平菇新品种——秀珍菇的特征特性[J].中国食用菌,2005,24(4):26-26. 被引量:50
  • 4付立忠,吴学谦,魏海龙,吴庆其,李海波,张新华,贾亚妮.我国食用菌育种技术应用研究现状与展望[J].食用菌学报,2005,12(3):63-68. 被引量:45
  • 5QUINN GP,KEOUGH MJ.生物实验设计与数据分析[M].蒋志刚,李春望,曾岩,主译.北京:高等教育出版社,2003.
  • 6Shnyreva AA, Sivolapova AB, Shnyreva AV. The commercially cultivated edible oyster mushrooms Pleurotus sajorc-aju and P. pulmonarius are two separate species, similar in morphology but reproductively isolated[J]. Russian Journal of Genetics, 2012, 48(11): 1080-1088.
  • 7Chakravarty B. Trends in mushroom cultivation and breeding[J]. Australian Journal of Agricultural Engineering, 2011, 2(4): 102-109.
  • 8Chai HM, Zhou HM, Zhao J, et al. Searching development-deficient genes in edible mushroom by self-crossing[J]. Journal of Agricultural Science and Technology, 2012, 13(10): 2037-2043.
  • 9Adebayo EA, Oloke JK, Yadav A, et al. Improving yield performance of Pleurotus pulmonarius through hyphal anastomosis fusion of dikaryons[J]. World Journal of Microbiology and Biotechnology, 2013, 29(6): 1029-1037.
  • 10GilbeJE, appropdate gerrnplasm 1999,98(6) Lewis RV, Wilkinson MJ, et al. Developing an strategy to assess genetic variability in plant collections[J]. Theoretical and Applied Genetics, 1125-1131.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部