期刊文献+

线粒体上核糖核蛋白基因内含子与相应编码序列的相互作用分析 被引量:1

Interactions Between Introns and Corresponding Protein Coding Sequences of Mitochondrial Ribosomal Protein Genes
下载PDF
导出
摘要 剪切后的内含子对基因的表达调控过程仍发挥着重要的作用,发现内含子通过与相应mRNA的相互作用来实现这些功能的.用改进后的Smith-Waterman算法进行局域比对,对线虫、果蝇、小鼠和人类的线粒体上核糖核蛋白基因的内含子与相应编码序列做匹配性比对分析,发现内含子的中部序列与编码序列存在较强的相互作用,三类内含子上的匹配频率分布显示了各自的特征.在编码序列上有多个最佳匹配区域和禁配区域,推测这些禁配区域可能是蛋白质复合体的结合区域.最佳匹配片段的GC含量分布范围较广,覆盖了其它三类序列分布范围.高等真核生物最佳匹配片段的平均长度比低等真核生物要长一些.结论表明最佳匹配片段的序列特征符合RNA-RNA相互作用的一般规律,内含子应该是一类调控基因表达的功能片段. Post--spliced introns play a very important role in regulating gene expression; it is found that intron functions are carried out by the interactions between introns and the corresponding mRNAs. Based on the ribosomal protein genes of mitochondrial in C. elegans, D. melanogaster, M. musculus and H. sapiens, matching alignment analysis between introns and their corresponding pro- tein coding sequences were done by using the improved Smith--Waterman algorithm. Our results showed that the middle regions of introns have high matching frequencies. The matching frequency distributions of first introns,middle introns and last introns are different from each other and have their own characters. There are many optimal matched regions and forbidden regions distributed in protein coding sequences. It is speculated that the forbidden regions may be the binding regions of a protein complex. All GC content distribution ranges of the optimal matched segments are very wide and cover the GC content ranges of introns,exons and protein coding sequences. Average lengths of the optimal matched segments are longer for high eukaryotes than low eukaryotes. Our results showed that the sequence characters of the optimal matched segments correspond directly with the interaction characters of RNA--RNA and introns should be a kind of function segments in the process of gene regulate.
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第5期515-524,共10页 Journal of Inner Mongolia University:Natural Science Edition
基金 国家自然科学基金(31260219) 内蒙古大学本科生创新培养基金项目资助
关键词 线粒体 核糖核蛋白基因 内含子 编码序列 局域比对 最佳匹配片段 GC含量 mitochondrial, ribosomal gene, intron, protein coding sequence, local alignment, optireal matched segments,GC content
  • 相关文献

参考文献29

  • 1The ENCODE Project Consorium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project[J. Nature, 2007,447 ( 7146 ) . 799-816.
  • 2Zhang ZD,Paccanaro A,Fu Y,et al. Statistical analysis of the genomic distribution and correlation of regulatory elements in the ENCODE regions[J]. Genome Research, 2007,17 (6) . 787-797.
  • 3Comeron JM. What controls the length of noncoding DNA[J. Current Opinion in Genetics Development, 2001,11:652-659.
  • 4Roy SW. Large- scale comparison of intron positions in mammalian genes shows intron loss but no gain[J. Pro- ceedings of the National Academy of Sciences ,2003,100(12) :7158-7162.
  • 5Marais G, Nouvellet P, Keightley PD, et al. Intron size and exon evolution in Drosophila[J. Genetics, 2005,170 (1) :481-485.
  • 6Gerstein MB,Bruee C,Rozowsky JS,et al. What is a gene,post-ENCODE? History and updated definition [J. Genome Research, 2007,17(6) . 669-681.
  • 7King DC, Taylor J, Zhang Y, et al. Finding cis-regulatory elements using comparative genomies., some lessons from ENCODE data[J]. Genome Research ,2007,17(6) :775-786.
  • 8Brown JWS, Marshall DF, Echeverria M. Intronic noncoding RNAs and splicing[J. Trends in Plant Science, 2008,13 (7) : 335-342.
  • 9Dalakouras A,Moser M, Zwiebel M1, et al. A hairpin RNA construct residing in an intron efficiently triggered RNA-directed DNA methylation in tobacco[J]. The Plant Journal, 2009,60(5):840-851.
  • 10Sunitha S,Shivaprasad PV,Sujata K, et al. High Frequency of T-DNA Deletions in Transgenic Plants Trans- formed with Intron- Containing Hairpin RNA Genes[J]. Plant Molecular Biology Reporter, 2011,30( 1 ) : 158- 167.

二级参考文献23

  • 1Scott W R, Alexei F, Walter G. Large-scale comparison of intron positions in mammalian genes shows intron loss but no gain. Proc Natl Acad Sci USA, 2003, 100(12): 7158-7162.
  • 2Elodie G, Tomas M B, Olga F, et al. Patterns and rates of intron divergence between humans and Chimpanzees. Genome Biol, 2007, 8(2): R21.1-R21.13.
  • 3John S M, Michael J G. The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Mol Biol Evol, 2001, 18(9): 1611-1630.
  • 4Ajit N, Shlomo H M, Meliss J M. A quantitative analysis of intron effects on mammalian gene expression. RNA, 2003, 9(5): 607 -617.
  • 5Gabriel M I, Pierre N, Peter D K, et al. Intron size and exon evolution in Drosophila. Genetics, 2005, 170(1): 481-485.
  • 6Comeron J M. What controls the length of noncoding DNA?. Curr Opin Genet, 2001, 11(6): 652-659.
  • 7Pelrov D A. DNA loss and evolution of genome size in Drosophila. Genetiea, 2002,115(1): 81-91.
  • 8Bartolome C, Masidex, Charlesworth B. On the abundance and distribution of transposable elements in the genome of Drosophila rnelanogaster. Mol Biol Evol, 2002, 19(6): 926-937.
  • 9Bergman C M, Krettman M. Analysis of conserved noncoding DNA in Drosophila reveals similar constraints in intergenic and intronic sequences. Genome Res, 2001, 11(8): 1335-1345.
  • 10Maswell E S, Fournier M J. The small nucleolar RNAs. Ann Rev Biochem, 1995, 64:897-934.

共引文献6

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部