期刊文献+

矩形件优化排样的自适应遗传模拟退火算法 被引量:11

Adaptive Genetic Simulated Annealing Algorithm in Optimal Layout of Rectangular Parts
下载PDF
导出
摘要 针对理论上属于NP完全问题的矩形件优化排样问题,提出了一种基于小生境技术的自适应遗传模拟退火算法。研究了将矩形件在板材上的排列方式转换为特定编码的方法,利用遗传模拟退火算法进行全局优化概率搜索,考虑到算法中交叉概率和变异概率的选择影响到算法收敛性,提出了自适应的交叉概率和变异概率,并通过小生境技术对子辈个体是否替换父辈个体加以控制,最终得到矩形件排样的最优次序和排放方式,采用最低水平线策略的启发式排样算法实现自动排样。排样实例表明,该优化排样算法行之有效,具有广泛的适应性。 Aiming at the optimal layout problem of two dimensional rectangular parts, which is a NP-complete problem, an adaptive niched genetic simulated annealing algorithm was presented. This paper translated the layout of rectangular parts on a rectangle into a special coding of genetic algorithm, the proposed approach automatically looked for the best sequence of the rectangular parts and each part's optimum rotation by the genetic simulated annealing algorithm. Considering the choice of crossover probability and mutation probability affected algorithm convergence, the adaptive crossover probability and mutation probability were put forward. The niche technology controlled whether the child individual replacement the parent individual or not. Finally, the lowest horizontal algorithm completed the automatic layout. Examples indicate that the algorithm is effective and practical.
机构地区 东北大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2013年第18期2499-2504,共6页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50574019) 国家高技术研究发展计划(863计划)资助项目(2008AA04Z135) 中央高校基本科研业务费专项资金资助项目(N100603002)
关键词 矩形件优化排样 自适应遗传模拟退火算法 小生境技术 启发式算法 optimal layout of rectangular parts adaptive genetic simulated annealing algorithm niche technology heuristic algorithm
  • 相关文献

参考文献14

  • 1Farley A A. Mathematical Programming Models forCutting Stock Problems in the Clothing Industry[J]. Journal of the Operational Research Society,1988,39(1):41-53.
  • 2Reda M S, Abd E A. An Interactive Technique forthe Cutting Stock Problem with Multiple Objects[J]. European Journal of Operational Research,1994,78(3):304-317.
  • 3Shpitalni M, Manevich V. Optimal OrthogonalSubdivision of Rectangular Sheets[J]. Transactionsof ASME Journal of Manufacturing Science and En-gineering, 1996 , 118(3) :281-288.
  • 4曹炬,周济,余俊.矩形件排样优化的背包算法[J].中国机械工程,1994,5(2):11-12. 被引量:33
  • 5李明,周泽魁.基于粒子群算法的矩形件优化排样[J].电路与系统学报,2007,12(2):39-42. 被引量:3
  • 6史俊友,苏传生,翟红岩.不规则零件优化排样的神经网络混合优化算法[J].工程设计学报,2009,16(4):271-275. 被引量:3
  • 7Liu D Q, Teng H F. An Improved BL— algorithmfor Genetic Algorithm of the Orthogonal Packing ofRectangles[J]. European Journal of Operational Re-search,1999,112(2):413-420.
  • 8杨威,罗阳,刘胜青.大规模矩形零件优化套排的遗传算法[J].四川大学学报(工程科学版),2001,33(5):59-62. 被引量:14
  • 9Babu A R,Babu N R. Effective Nesting of Rectan-gular Parts in Multiple Rectangular Sheets UsingGenetic and Heuristic Algorithms [J]. InternationalJournal of Production Research,1999,37(7) : 1625-1643.
  • 10Bekiroglu S,Debe T, Ayvaz Y. Implementation ofDifferent Encoding Types on Structural Optimiza-tion Based on Adaptive Genetic Algorithm[J]. Fi-nite Elements in Analysis and Desigh, 2009,45(11):826-835.

二级参考文献23

  • 1黄兆龙.用启发算法和神经网络法解决二维不规则零件排样问题[J].微计算机信息,2004,20(7):118-119. 被引量:13
  • 2王宏达,尚久浩,樊养余.智能排样算法分析与展望[J].机电工程技术,2004,33(10):9-11. 被引量:5
  • 3史俊友,冯美贵.二维不规则件优化排样的小生境遗传算法[J].工程设计学报,2007,14(2):170-174. 被引量:9
  • 4NELL Julia A Ben, DOWNS-LAND Kathryn A, DOWNS-LAND William B. The irregular cutting-stock problem-a new procedure for deriving the no-fit polygon[J]. Computers and Operations Research, 2001,28 : 271-287.
  • 5冯美贵.基于NGSA算法的不规则件优化排样系统的研究[D].青岛:青岛科技大学,2006.
  • 6邢文训,现代优化设计技术,1999年,129页
  • 7柯晶 钱积新.应用粒子群优化的非线性系统辨识[J].电路与系统学报,2003,8(4):12-15.
  • 8Kennedy J,Eberhart R C.Particle swarm optimization[A].Proc.IEEE Int'l Conf.on Neural Networks[C].Piscataway,NJ,1995.1942-1948
  • 9Eberhart R C,Shi Y.Particle Swarm Optimization:Development,Applications and Resources[A].Proc.Congress on Evolutionary Computation[C].Seoul,Korea,2001.81-86.
  • 10Clerc M.The swarm and the queen:towards a deterministic and adaptive particle swarm optimization[A].Proc.1999 ICEC[C].Washington,DC,1999.1951-1957.

共引文献156

同被引文献90

引证文献11

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部