期刊文献+

基于Apriori的相容数据集间关联规则演绎方法 被引量:4

Deductive method of association rules among compatible datasets based on Apriori
下载PDF
导出
摘要 Apriori关联规则数据挖掘算法只针对一类相关数据集进行数据挖掘,而现实世界中各种不同的数据集非常庞大,如何在不相关数据集间进行数据挖掘,拓展规则的数量具有挑战性。目前Apriori关联规则算法研究基本上集中在算法性能优化和针对不同数据形式的基础上,没有突破不相关数据集的界限。针对这个问题,首先给出了相关数据集、不相关数据集、相容数据集的概念,进一步给出了一种基于Apriori的不相关数据集中相容数据集间的关联规则演绎算法,给出了算法演绎规则,通过构建法证明了算法的正确性。通过实例演示了应用方法,该算法可实现基于Apriori的相容数据集间关联规则的规则演绎,是普通数据挖掘算法无法实现的,扩展了关联规则算法的应用领域;同时,由于关联规则是在相容数据集上独立挖掘出来的,没有进行原始数据间的交换,在一定程度上实现了隐私保护。 Data mining algorithm based on Apriori of association rules mines data only for a class of correlated datasets. However, various datasets are very large in the real world, and how to mine data among uncorrelated datasets and how to expand the number of rules are the challenging issues. The study of Apriofi algorithm of association rules basically focus on the performance optimization of algorithm and different data forms at present, which does not breakthrough the limit of the uncorrelated datasets. For this, the concepts of correlated datasets, uneorrelated datasets and compatible datasets were given in the paper, furthermore a deductive method of association rules among uncorrelated datasets based on Apriori was given in this paper, and in which deductive rules of the algorithm were given. The correctness of the algorithm was proved by construction method, and the application method was demonstrated by examples. The algorithm can realize rules deduction among correlated rules based on Apriori for uncorrelated datasets, which cannot be realized by common data mining algorithms. The algorithm expands the application field of correlated rules algorithm; meanwhile, it realizes the privacy protection in a certain extent because the rules are mined independently out on the basis of compatible datasets and have not shared original data.
出处 《计算机应用》 CSCD 北大核心 2013年第10期2796-2800,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61261025) 内蒙古自然科学基金资助项目(2012MS0913)
关键词 相容数据集 关联规则 规则演绎 APRIORI算法 compatible datasets association rules rules deduction Apriori algorithm
  • 相关文献

参考文献10

二级参考文献70

共引文献106

同被引文献49

  • 1翁敬农.译.数据挖掘教程[M].北京:清华大学出版社,2003.
  • 2徐计,王国胤,于洪.基于粒计算的大数据处理[J].计算机学报,2014,37(113):1-22.
  • 3Wu Weizhi,Leung Y,Mi Jusheng.Granular computing and knowledge reduction in formal contexts[J].IEEE Trans on Knowledge and Data Engineering,2009,21(10):1461-1474.
  • 4Ko P H.Granular computing for relational data classification[J].Journal of Intelligent Information Systems,2013,41(2):187-210.
  • 5Shen Yanguang,Shen Jing,Fan Yongjian.Study on the application of multilevel association rules based on granular computing[C] //Proc of IEEE International Conference on Intelligent Computation Technology and Automation.2010:564-567.
  • 6Fang Gang,Wu Yue.Frequent spatiotemporal association patterns mining based on granular computing[J].Informatica,2013,37(4):443-453.
  • 7Qiu Taorong,Chen Xiaoqing,Liu Qing,et al.Granular computing approach to finding association rules in relational database[J].International Journal of Intelligent Systems,2010,25(2):165-179.
  • 8Tsai Limin,Lin Shujing,Yang Donlin.Efficient mining of generalized negative association rules[C] //Proc of IEEE International Conference on Granular Computing.Washington DC:IEEE Computer Society,2010:471-476.
  • 9Fan Wenfei, Geerts F. Relative information complete- ness[C]// Proc of the 28th ACM SIGMOD-SIGACT- SIGART Symp on Principles of Database Systems. NewYork: ACM, 2009 : 97 -106.
  • 10Gupta R, Gupta H, Mohania M K. Cloud computing and big data analytics: What is new from databases perspective? //Proe of the 1st Int Conf of Big Data Analytics. Berlin, Springer, 2 012 : 4 2-61.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部