期刊文献+

基于随机评价机制的量子粒子群优化算法及其参数控制 被引量:3

Improved QPSO algorithm based on random evaluation and its parameter control
下载PDF
导出
摘要 为了改善量子行为粒子群优化(QPSO)算法的收敛性能,提出了一种基于随机评价策略的改进QPSO优化算法(RE-QPSO)。该算法通过使用随机因子对种群中粒子的创新性进行评价,提高了粒子摆脱局部极值的能力。提出了固定取值和线性递减两种控制策略分析RE-QPSO算法的唯一控制参数———收缩-扩张系数,通过6个标准测试函数的仿真结果给出了具有实际指导意义的控制参数选择方法。 In order to improve the convergence performance of Quantum-behaved Particle Swarm Optimization (QPSO) algorithm, this paper proposed an improved QPSO algorithm which was called RE-QPSO based on the random evaluation strategy. The new algorithm evaluated the innovation of particles by using a random factor and improved the ability of the particles to get rid of the local optima. Fixed value strategy and linear decreasing strategy were proposed for controlingthe theunique parameter of QPSO algorithm and they were tested on six benchmark functions. According to the test results, some conclusions concerning the selection of the parameter were drawn.
出处 《计算机应用》 CSCD 北大核心 2013年第10期2815-2818,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61104175) 四川省软科学研究计划项目(2012ZR0022) 四川省科技支撑计划项目(2012GZX0090)
关键词 粒子群优化 量子粒子群优化 全局收敛 Particle Swarm Optimization (PSO) Quantum-behaved Particle Swarm Optimization (QPSO) globalconvergence
  • 相关文献

参考文献10

  • 1KENNEDY J, EBERHART R C. Particle swarm optimization[ C]// Proceedings of 1995 IEEE International Conference on Neural Net- works. Piseataway: IEEE, 1995:1942-1948.
  • 2DUAN Y H, GAO Y L, LI J M. A new adaptive particle swarm op- timization algorithm with dynamically changing inertia weight[ J]. Intelligent Information Management Systems and Technologies, 2006, 2(2) : 245 -255.
  • 3GAO Y L, DUAN Y H. An adaptive particle swarm optimization al- gorithm with new random inertia weight[ C]//Proceedings of the 8th International Conference on Artificial Intelligence and Soft Compu- ting. Berlin: Springer - Verlag, 2007:342 -350.
  • 4SUN J, FENG B, XU W B. Panicle swarm optimization with particles having quantum behavior[ C]//Proceedings of the 2004 Congress on Evolutionary Computation. Piscataway: IEEE, 2004:325-331.
  • 5TRELEA I C. The particle swarm optimization algorithm: conver- gence analysis and parameter selection[ J]. Information Processing Letters, 2003, 85(6) : 317 - 325.
  • 6KADIRKAMANATHAN V, SELVARAJAH K, FLEMING P J. Sta- bility analysis of the particle dynamics in particle swarm optimizer [J]. IEEE Transactions on Evolutionary Computation, 2006, 10 (3) : 245 -255.
  • 7van den BERGH F, ENGELBRECHT A P. A new locally conver- gent particle swarm optimizer[ C]//Proceedings of 2002 IEEE Con- ference on Systems, Man and Cybernetics. Piscataway: IEEE, 2002:184 - 190.
  • 8van den BERGH F. An analysis of particle swarm optimizers [ D]. Pretofia: University of Pretoria, 2001.
  • 9GLERC M, KENNEDY J. The particle swarm - explosion, stabili- ty, and convergence in a multidimensional complex space [ J]. IEEE Transactions on Evolutionary Computation, 2002, 6( 1 ) : 58 -73.
  • 10王凌.智能优化算法及应用[M].北京:清华大学出版社,2001.17-35.

共引文献18

同被引文献25

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部