期刊文献+

基于可变指数及L1保真项的图像去噪算法 被引量:3

Image denoising algorithm with variable exponent regularization and L1 fidelity
下载PDF
导出
摘要 全变分(TV)模型采用了梯度的1范数作为正则化约束,它能够沿着梯度方向较好地保护图像的边缘信息,但在图像较均匀区域,容易产生"阶梯"效应。利用梯度的可变指数函数作为正则化项,提出TV模型的改进模型,该模型既保持TV模型保护图像边缘信息的优点,又可以明显地减少非边界区域"阶梯"效应的产生,同时把u-f的1范数作为数据保真项增强了模型修复图像破损部分的能力。 The L1 norm of gradient is used as the regularization term in the Total Variation (TV) model which can preserve the edges of the image well. However, it has the staircasing effect in the relatively smooth regions. Using the variable exponent function as the regularization term, the modified model can not only preserve the edges of image as well as the TV model but also decrease the staircasing effect obviously. Simultaneously, the L1 norm ofu -fwas regarded as the fidelity term of the model, which can enhance the ability of image denoising.
出处 《计算机应用》 CSCD 北大核心 2013年第10期2931-2934,共4页 journal of Computer Applications
关键词 图像去噪 全变分模型 可变指数函数 正则化 L1范数 image denoising Total Variation (TV) model variable exponent function regularization L1 norm
  • 相关文献

参考文献21

  • 1Gonzalez R C,Woods R E.数字图像处理[M].阮秋琦,阮宇智,译.2版.北京:电子工业出版社,2003.
  • 2MALLAT S.信号处理的小波引导[J].杨力华,译.北京:机械工业出版社,2002.
  • 3GABOR D. Information theory in electron microscopy[ J]. La- boratory Investigation: a Journal of Technical Methods and Pa- thology, 1965(14) : 801 -807.
  • 4JAIN A K. Partial differential equations and finite-difference methods in image proeessing, part 1: image representation [ J]. Journal of optimization Theory and Applieations, 1977, 23(1) :65 -91.
  • 5RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms[ J]. Physica D: Nonlinear Phe- nomena, 1992, 60( 1 ) : 259 - 268.
  • 6BLOMGREN P CHANT F, MULET P, et al. Variational PDE models and methods for image processing[ J]. Research Notes in Mathematics, 2000,420:43-68.
  • 7CHEN Y, LEVINE S, RAO M. Variable exponent, linear growth functionals in image restoration[ J]. SIAM Journal on Applied Mathematics, 2006, 66(4) : 1383 - 1406.
  • 8HARJULEHTO P, HASTO P, LE U V. Overview of differen- tial equations with non-standard growth[ J]. Nonlinear Analy- sis: Theory, Methods & Applications, 2010, 72(12) : 4551 - 4574.
  • 9L! F, LI Z B, PI L. Variable exponent functionals in image restoration[ J]. Applied Mathematics and Computation, 2010, 216(3):870 -882.
  • 10WU C, ZHANG J, TAI X C. Augmented Lagrangian method for total variation restoration with non-quadratic fidelity[ J]. Inverse Problems and Imaging, 2011, 5( 1): 237 -261.

共引文献42

同被引文献29

  • 1Aubert G, Komprobst P.Mathematical problems in image processing:partial differential equations and the calculus of variations[M].New York:Springer,2001.
  • 2Rudin L, Osher S, Fatemi E.Nonlinear total variation based noise removal algorithms[J].Phys D, 1992,60 : 259-268.
  • 3Osher S,So16 A,Vese L.Image decomposition and resto- ration using total variation minimization and the H1 norm[J].SIAM Multiscale Model and Simul,2003,1(3): 349-370.
  • 4Aujol J J, Chambolle A.Dual norms and image decompo- sition models[J].Int J Comput Vision,2005,63(1):85-104.
  • 5Yang J,Zhang Y,Yin W W.An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise[J].Siam J Sci Comput, 2009,31 (4) : 2842-2865.
  • 6Tang L, He C.Multiscale texture extraction with hierar- chical (BV, Gp, L2) decomposition[J].Joumal of Mathemat- ical Imaging & Vision,2013,45(2)-148-163.
  • 7Chan T,Esedoglua S,Park F.Image decomposition com- bining staircase reduction and texture extraction[J].J Vis Commun Image R,2007, 18(6) :464-486.
  • 8Chan T, Esedoglu S, Park F.A fourth order dual method for staircase reduction in texture extraction and image restoration problems,UCLA CAM Report[R].2005.
  • 9Chambolle A, Lions EImage recovery via total variation minimization and related problems[J].Numer Math, 1997, 76(2) : 167-188.
  • 10Bergounioux M, Piffet L.A second-order model for image denoising[J].Set-Valued and Variational Analysis, 2010, 18(3/4) :277-306.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部