期刊文献+

酵母细胞表达金属硫蛋白对铅离子的吸附研究 被引量:3

Enhanced Pb^(2+) Biosorption By Recombinant Saccharomyces cerevisiae Expressing Human Metallothionein
下载PDF
导出
摘要 根据人肝金属硫蛋白的基因序列,结合酿酒酵母菌密码子使用规律,改造并合成了可在酵母细胞内高效表达的金属硫蛋白基因,并将该基因转入酵母细胞内进行了表达。以野生型菌株为对照,初步测定了酿酒酵母INVSC1-mt菌株对Pb2+的吸附作用。研究结果表明,金属硫蛋白基因的表达有助于提高酿酒酵母细胞对Pb2+的吸附作用,其最大吸附量比野生型菌株提高了11%。同时,酿酒酵母INVSC1-mt菌株吸附Pb2+的速度较快,在30 min时,其吸附率就达到了96.03%,吸附量为5.76 mg/g湿重细胞。而野生型菌株至120 min时,其吸附率才达到90.44%。 The recombinant Saccharomyces cerevisiae expressing human hepatic metallothionein is constructed for biosorption of lead (II). The gene sequence of mt is modified for codon preference of S. cerevisiae and synthe- sized using chemical method. The maximal biosorption capability of lead compounds Pb2+ of the recombinant in- creases more than 11% compared with the control. For mr-expressing recombinant strains, a rapid adsorption oc- curres within the first 30 rain with a significant level of Pb^2+ (5.76mg/g [ humid weight ] ), the biosorption rea- ches about 96% of the saturated value within 30 rain. For comparison, S..cerevisiae cells reach its maximal Pb2+ adsorption capacity (5.43 mg/g) until 120 min. The recombinant will be useful in enhancement the effectiveness of lead biosorption in practice.
出处 《东华理工大学学报(自然科学版)》 CAS 2013年第3期339-343,共5页 Journal of East China University of Technology(Natural Science)
基金 国家自然科学基金项目(21107014) 江西省教育厅项目(GJJ11140) 东华理工大学放射性地质与勘探技术国防重点学科实验室开放基金项目(REGT1217)
关键词 酿酒酵母 金属硫蛋白 生物吸附 S. cerevisiae metallothionein biosorption
  • 相关文献

参考文献17

  • 1方彩云,谢福莉,付玮,李友国.利用细菌表面展示技术构建镉耐受性的重组根瘤菌[J].应用与环境生物学报,2011,17(1):82-86. 被引量:3
  • 2吴志良,程汉东.微生物与膜过滤复合技术在处理油田污水的研究及现场试验[J].东华理工大学学报(自然科学版),2008,31(4):365-368. 被引量:6
  • 3杨静静,栾兴社.用酵母菌吸附处理废水中重金属离子研究现状[J].化工科技,2011,19(4):58-61. 被引量:3
  • 4Chen J P, Lin Y S. 2007. Sol-gel-immobilized recombinant E. coli for hiosorption of Cd2+ [ J]. Journal of the Chinese Institute of Chemical Engineers, 38(3-4 ) :235-243.
  • 5Dhankhar R, Hotwla A, Solanki R, et al. 2011. Saccharomyces cerevi- siae: a potential biosorbent for biosorption of uranium [ J]. Interna- tional Journal of Engineering Science and Technology, 3 (6) :5397- 5407.
  • 6(;horhani S, Tabandeh F, Yakhchali B, et al. 2011. Immobilization of recombinant nanobiofiber CS3 fimbriae onto alginate beads for im- pnwement of cadmium biosorption [ J ]. Biotechnology and Bioprocess Engineering, 16( 5 ) :1019-1026.
  • 7Gietz R D, Schiesll R H. 2007. Large-scale high-efficiency yeast trans- formation using the LiAe/SS carrier DNA/PEG method [ J ]. Nature Protocols, 2( 1 ) :38-41.
  • 8Kao W C, Chiu Y P, Chang C C, et al. 2008. Localization effect on the metal biosorption capability of recombinant mammalian and fish metal- lothioneins in Escherichia coli [J]. Biotechnology Progress, 22 (5) :1256-1264.
  • 9Kazumasa H, Naoki T, Kazuhisa M. 2005. Biosynthetic regulation of phytochelatins, heavy metal-binding peptides [ J]. Journal of Biosci- ence and Bioengineering, 100(6) : 593-599.
  • 10Kiyono M, Pan-Hou H. 2006. Genetic engineering of bateria for envi- ronmental remediation of mercury [ J]. Journal of Health Science, 52 (3) :199-204.

二级参考文献17

共引文献9

同被引文献52

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部