期刊文献+

Efcient Multipartite Polarization Entanglement Distribution Over Arbitrary Noise Channel 被引量:1

Efcient Multipartite Polarization Entanglement Distribution Over Arbitrary Noise Channel
原文传递
导出
摘要 We present an efcient faithful multipartite polarization entanglement distribution protocol over an arbitrary noisy channel.The spatial degree of freedom is used to carry the entanglement during the transmission.We describe the principle by distributing n-qubit Greenberge–Horne–Zeilinger state and n-qubit W state.Our scheme can be used to distribute arbitrary n-qubit entangled states to n distant locations.The remote parties can obtain maximally entangled states deterministically on the polarization of photons.Only passive linear optics are employed in our setup,which makes our scheme more feasible and efcient for practical application in long distance quantum communication. We present an efficient faithful multipartite polarization entanglement distribution protocol over an ar- bitrary noisy channel. The spatial degree of freedom is used to carry the entanglement during the transmission. We describe the principle by distributing n-qubit Greenberge-Horne--Zeilinger state and n-qubit W state. Our scheme can be used to distribute arbitrary n-qUbit entangled states to n distant locations. The remote parties can obtain maximally entangled states deterministically on the polarization of photons. Only passive linear optics are employed in our setup, which makes our scheme more feasible and efficient for practical application in long distance quantum communication.
机构地区 Department of Physics
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2013年第10期421-426,共6页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No.11004258 Fundamental Research Funds for the Central Universities under Grant No.CQDXWL-2012-014
关键词 量子纠缠态 噪声信道 偏振 远距离量子通信 通道 量子比特 最大纠缠态 非线性光学 entanglement distribution, arbitrary entangled state, polarization state, spatial degree of freedom
  • 相关文献

参考文献46

  • 1M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge (2000).
  • 2T. Yamamoto, J. Shimamura, S.K. Ozdemir, M. Koashi, and N. Imoto, Phys. Rev. Lett. 95 (2005) 040503.
  • 3T. Yamamoto, R. Nagase, J. Shimamura, S.K. Ozdemir, M. Koashi, and N. Imoto, New J. Phys. 9 (2007) 191.
  • 4D. Kalamidas, Phys. Lett. A 343 (2005) 331.
  • 5D.B. de Brito and R.V. Ramos, Phys. Lett. A 352 (2006) 206.
  • 6C. Han, Z.W. Zhuo, and G.C. Guo, J. Phys. B 39 (2006) 1677.
  • 7X.H. Li, F.G. Deng, and H.Y. Zhou, Appl, Phys. Lett. 91 (2007) 144101.
  • 8F.G. Deng, X.H. Li, and H.Y. Zhou, Quan. Infor. Compu. 11 (2011) 0913.
  • 9X.H. Li and X.J. Duan, J. Phys. B 44 (2011) 065503.
  • 10Z.D. Walton, A.F. Abouraddy, A.V. Sergienko, B.E.A. Saleh, and M.C. Teich, Phys. Rev. Lett. 91 (2003) 087901.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部