期刊文献+

一种针对概率与非概率混合结构可靠性的敏感性分析方法 被引量:3

A Structural Reliability Sensitivity Analysis Method for Hybrid Uncertain Model with Probability and Non-probabilistic Variables
下载PDF
导出
摘要 基于概率与非概率混合不确定模型,提出了一种用于不确定结构的可靠度敏感性分析方法。混合不确定模型中,使用随机分布描述不确定性变量,并给定某些关键分布参数变化区间而非精确值,通过混合可靠性分析方法,获得结构可靠性指标或失效概率区间。给出了六种敏感性指标,定量描述了可靠性区间对区间分布参数的敏感程度。该方法被用于一悬臂梁结构及一实际车门结构的可靠性分析中。 Based on hybrid uncertain model, a new reliability sensitivity analysis technique was de-veloped for uncertain structures. Random distributions were used to deal with the uncertainty, while some key parameters in the distribution functions were given variation intervals instead of precise val-ues. Hybrid reliability model was employed to evaluate the reliability degree of an uncertain structure based on the reliability index approach(RIA). Six sensitivity indices were used for the sensitivity of the average reliability and reliability bounds with respect to the averages and widths of intervals. Equations of these sensitivity indices were derived. Two examples were used to demonstrate the accu-racy and effectiveness of the proposed method.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2013年第19期2577-2583,共7页 China Mechanical Engineering
基金 国家自然科学基金资助项目(51222502) 教育部新世纪优秀人才支持计划资助项目(NCET-11-0124) 全国优秀博士学位论文专项资金资助项目(201235) 湖南省自然科学创新研究群体基金资助项目(12JJ7001)
关键词 结构可靠性 敏感性分析 混合不确定性 概率 区间 structural reliability sensitivity analysis hybrid uncertain model probability inter-val
  • 相关文献

参考文献15

  • 1Hasofer A M, Lind N C. Exact and Invariant Second- moment Code Format[J]. Journal of the Engineering Mechanics, ASME, 1974, 100:111-121.
  • 2Rackwitz R, Fiessler B. Structural Reliability under Combined Random Load Sequences[J]. Computers b- Structures, 1978, 9(5): 489-494.
  • 3Breitung K W. Asymptotic Approximations for Proba- bility Integrals[J]. Berlin: Springer-Verlag, 1994.
  • 4Polidori D C, Beck J L, Papadimitriou C. New Approxi- mations for Reliability Integrals [J]. Journal of Engi- neering Mechanics, 1999,125 (4) :466-475.
  • 5Ben-Haim Y, Elishakoff I. Convex Models of Uncer- tainties in Applied Mechanics[J]. Elsevier Science Pub- lisher, Amsterdam, 1990.
  • 6郭书祥,吕震宙.结构的非概率可靠性方法和概率可靠性方法的比较[J].应用力学学报,2002,24(4):524-526.
  • 7程远胜,钟玉湘,曾广武.基于概率和非概率混合模型的结构鲁棒设计方法[J].计算力学学报,2005,22(4):501-505. 被引量:7
  • 8Du X P. Interval Reliability Analysis[C]//ASME 2007 Design Engineering Technical Conference & Computers and Information in Engineering Conference (DETC2007). Las Vegas, 2007:1103-1109.
  • 9Luo Y J, Kang Z, Alex L. Structural Reliability As- sessment Based on Probability and Convex Set Mixed Model[J]. Computers & Structures, 2009,87 :1408- 1415.
  • 10Elishakoff I, Colombi P. Combination of Probabilistic and Convex Models of Uncertainty When Limited Knowledge is Present on Acoustic Excitation Parame- ters[J]. Computer Methods in Applied Mechanics Engineering, 1993, 104: 187-209.

二级参考文献11

  • 1RAO R R, SUNDARARAJU K, BALAKRISHNAC, et al. Multiobjeetive insensitive design of structures[J]. Computers & Structures , 1992,45(2):349-359.
  • 2BESTLE D, EBERHARD P. Dynamic system via multicriteria optimization [A]. Fandel G and Gal Ted. Proceedings of the Twelfth International Conference on Multiple Criteria Design Making[C].Hagen, Germany. June 19-23, 1995. Berlin.Springer-Verlag, 1997. 467-478.
  • 3ELISHAKOFF I, HAFTKA R T, FANG J. Structural design under bounded uncertainty- optimization with anti-optimization[J]. Computers & Structures, 1994, 53(6) : 1401-1405.
  • 4TAGUCHI G. Introduction to Quality Engineering[ M ]. Tokyo: Asian Productivity Organization,1986.
  • 5BEN-HAIM Y, ELISHAKOFF I. Convex Models of Uncertainty in Applied Mechanics[M ]. Amsterdam:Elsevier Science Publishers, 1990.
  • 6PARKINSON A, SORENSEN C, POURHASSAN N. A general approach for robust optimal design[J].Journal of Mechanical Design, 1993, 115 (1) : 74-80.
  • 7DU X P, CHEN W. Towards a better understanding of modeling feasibility robustness in engineering design [J]. Journal of Mechanical Design, 2000,122(4) : 385-394.
  • 8SANDC-REN E, CAMERON T M. Robust design optimization of structures through consideration ofvariation [J]. Computers & Structures, 2002,80 (20-21): 1605-1613.
  • 9郭书祥,吕震宙.基于非概率模型的结构稳健可靠性设计方法[J].航空学报,2001,22(5):451-453. 被引量:23
  • 10程远胜,曾广武.结构非概率可靠性优化设计[J].华中科技大学学报(自然科学版),2002,30(3):30-32. 被引量:9

共引文献7

同被引文献22

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部