期刊文献+

基于不同网格结构的LBM算法研究 被引量:6

THE NUMERICAL STUDY OF LATTICE BOLTZMANN METHOD BASED ON DIFFERENT GRID STRUCTURE
下载PDF
导出
摘要 传统的格子波尔兹曼方法(lattice--Boltzmann method,LBM)通常基于标准均匀网格,这主要取决于速度的空间离散格式.均匀网格结构的特点,使LBM在处理具有复杂边界的问题时遇到较大的困难,从而限制了它的应用.另外,对于较为复杂的流动,其流场存在流动变化剧烈和平缓的区域,在流动变化剧烈的区域,往往需要足够的网格点才能更好地捕捉到流场信息,而均匀网格会使得网格数量过多,这会增加计算量,但网格数量过少又无法获得必要的流场信息,使LBM的计算效率降低.为了解决上述问题,用不同的网格结构,以顶盖驱动的腔体内流、柱体绕流和翼型绕流为例,探讨了提高LBM算法的计算效率和适用性问题. In this paper, we mainly focus on the different grid structures used in lattice Boltzmann method (LBM). We present corresponding methods for each grid structure. As we know, in the numerical simulations based on the traditional LBM, the standard uniform grid is always hired. This is up to the discrete velocities on the grid node. Yet, it is a thomy question when the LBM is employed to solving problems with complex boundaries, due to the grid structure of standard uniform grid itself. And this shortcoming would decrease the applicability of LBM. Besides, for those complicated flows, it is necessary to have enough meshes to capture the flow information in the zones where the flow state changes fiercely. In another word, if there are too many grids, it will greatly enlarge the computational burden with the use of standard uniform grid. On the other side, if the grids are not enough, it is hard to get a satisfied result. This dilemma greatly decreases the efficiency of LBM. For solving those questions above, we use different grid structures to improve the applicability and efficiency of LBM. In this paper, we perform the simulations of the lid-driven flow of cavity, flow around cylinder and flow around airfoil as our numerical cases.
作者 安博 桑为民
出处 《力学学报》 EI CSCD 北大核心 2013年第5期699-706,共8页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(11072201) 航空科学基金(2011ZA53006)资助项目~~
关键词 格子波尔兹曼方法 复杂边界 计算效率 网格结构 腔体内流 翼型绕流 lattice Boltzmann method, complex boundaries, computational efficiency, grid structure, cavity inner-flow, flow around airfoil
  • 相关文献

参考文献10

  • 1何亚玲,王勇,李庆.格子Boltzmann方法的理论及应用.北京:科学出版社,2008.
  • 2郭照立,郑楚光.2008.格子Boltzmann方法的原理及应用.北京:科学出版社.第76页.
  • 3Qian YH, d'Humieres D, Lallemand P. Lattice BGK models for Navier-Stokes equation. Europhysics Letters, 1992, 17 (6): 478-484.
  • 4Zhang Yong. Numerical simula- tion about" airfoil based on lattice boltzmann method. [Master The- sis]. Xi'an: Northwestern Polytechnical University, 2006(in Chi- nese).
  • 5He XY, Doolen G. Lattice Boltzmann method on curvilinear coordi- nates system: flow around a circular cylinder. Journal of Computa- tionalPhysics, 1997, 134:306-315.
  • 6王广超,施保昌,邓滨.嵌套边界的非均匀格子Boltzmann方法[J].水动力学研究与进展(A辑),2004,19(1):19-25. 被引量:6
  • 7张越.基于LBM和直角网格的翼型绕流流场数值分析.[硕士论文].西安:西北工业大学,2012.
  • 8王兴勇,索丽生,程永光,刘德有.双重网格的Lattice Boltzmann方法[J].河海大学学报(自然科学版),2003,31(1):5-10. 被引量:3
  • 9陈瑜,夏振华,蔡庆东.基于树网格的格子Boltzmann方法以及曲线边界的处理[J].计算物理,2010,27(1):23-30. 被引量:5
  • 10陈明杰.用格子Boltzmann方法计算绕流问题.[硕士论文].长春:吉林大学,2005.

二级参考文献13

  • 1Chen S Y, Doolen G D. Lattice Bohzmann method for fluid flows[J]. Ann Rev Fluid Mech, 1998, 30:329 -364.
  • 2He Xiaoyi, Luo Lishi, Micah Dembo. Some progress in lattice Boltzmann method. Part Ⅰ. Nonuniform mesh grids[J]. J Comput Phys, 1996, 129:357 -363.
  • 3Yu Dazhi, Mei Renwei, Shyy Wei. A multi-block lattice Bohzmann method for viscous fluid flows [ J]. Int J Numer Meth Fluids, 2002, 39: 99- 120.
  • 4Mei R, Shyy W. On the finite difference-based lattice Boltzmann method in curvilinear coordinates[J]. J Comput Phys, 1998, 143.426 - 448.
  • 5Dupont Todd F, Liu Yingjie. Back and forth error compensation and correction methods for removing errors induced by uneven gradients of the level set function[J]. J Comput Phys, 2003, 190:311 -324.
  • 6Zou Qisu, He Xiaoyi. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[ J]. Phys Fluids, 1997, 9 (6): 1591 -1598.
  • 7Ghia U, Ghia K N, Shin C T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid mthod[J]. J Comput Phys, 1982, 48:387 -411.
  • 8Filippova O, Hanel D. Grid refinement for lattice-BGK models[ J]. J Comput Phys, 1998, 147:219 -228.
  • 9Mei R W, Luo L S, Shyy W. An accurate curved boundary treatment in the lattice Bohzmann method[J]. J Comput Phys, 1999, 155:307-330.
  • 10Bouzidi M, Firdaouss M, Lallemand P. Momentum transfer of a Boltzmann-lattice fluid with boundary[J]. Phys Fluids, 2001, 13:3452 - 3458.

共引文献13

同被引文献75

  • 1柯常忠,索海波.ANSYS优化技术在结构设计中的应用[J].煤矿机械,2005,26(1):9-11. 被引量:50
  • 2何雅玲,王勇,李庆.格子Bohzmann方法的理论及应用[M].北京:科学出版社.2009.
  • 3CHEN S Y, DOOLEN G D. Lattice Bohzmann Method for fluid flows [J]. Journal of mathematical fluid mechanics, 1998,30: 329-64.
  • 4QIAN Y H, D'HUMIIRES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation [J]. Europhysics Letters, 1992,17:479-484.
  • 5HUMIRES D. Generalized lattice Boltzmann equations[M]// Shizgal B D,Weaver D P, Rarefied gas dynamics: theory and simulations Prog. Aercnaut. Astronaut. 159, 1992:450-484.
  • 6FILIPPOVA o, SUCCI S, MAZZOCCO F. Multiscale lattice Bohznmnn schemes with turbulence modeling [J]. Journal of Computational Physics, 2001,170(2 ) : 812-829.
  • 7SHU C, PENG Y, ZHOU C F, et al. Application of Taylor series expansion and least-squares--based lattice Bohzmann method to simulate turbulent flows [J].Journal of Turbulence, 2006,7(38): 1-12.
  • 8KRAFCZYK M, TLKE J, LUO L. Large-eddy simulations with a muhiple-relaxation-time LBE model [J]. International Journal of Modern Physics B, 2003,17( 1/2):33-39.
  • 9QIAN Yuehong, HUNMIIRES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation [J].EPL Europhys Lett, 1992,17:479-484.
  • 10NICOUD F,DUCROS F. Subgrid-Scale Stress Modeling Based on the Square of the Velocity Gradient Tensor [J]. Flow Turbulence and Combustion, 1999,62(3 ) : 183-200.

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部