期刊文献+

多元,LDPC编码调制系统中低复杂度的似然概率生成算法

Low-complexity likelihood probability derivation algorithm for non-binary LDPC-coded modulation system
下载PDF
导出
摘要 在采用多元LDPC码的通信系统中,尤其当使用高阶调制方案时,输入到译码器中的似然概率计算复杂度非常高。其主要原因是由于似然概率通常是关于信道输出的复杂函数,其计算需已知信道参数。针对上述问题,提出了一种低复杂度的近似似然概率生成算法。依据接收信号和星座点之间的欧氏距离,将星座点所对应的有限域GF(q)上域元素的似然概率进行分块逼近,能够以较低复杂度快速生成译码器所需要的概率度量。仿真结果表明,所提出的分块似然概率逼近生成算法在译码性能上损失较小且极大降低了似然概率生成的计算复杂度,是一种适用于高速多元LDPC译码器前端实现的候选算法。 The derivation of likelihood probabilities which are sent into the decoder in many LDPC-coded modulation sys- tems is a challenging task especially when high-order modulations are used. This is because likelihood probabilities are usu-ally complicated functions of the channel output and their calculation also requires knowledge of the channel parameters. To this end, a low-complexity likelihood probability derivation algorithm was proposed. Also, the Euclidean distance between the received signal and the constellation points was considered to divide the constellation points into two signal sets. Simula- tion results show that the proposed algorithm provides good trade-offs between performance and complexity, making it a good candidate for the hardware implementation of the front-end in the non-binary LDPC decoders.
出处 《通信学报》 EI CSCD 北大核心 2013年第9期84-91,共8页 Journal on Communications
基金 国家重点基础研究发展计划(“973”计划)基金资助项目(2012CB316100) 国家自然科学基金资助项目(61172082,61201140) 空间微波技术重点实验室开放课题基金资助项目(9140C530401120C53201)~~
关键词 多元LDPC码 似然概率 译码器 解调 non-binary LDPC codes likelihood probabilities decoder demodulations
  • 相关文献

参考文献19

  • 1GALLAGER R G. Low-density parity-check codes[J]. IRE Trans Information Theory, 1962, 8(I )'21-28.
  • 2DAVEY M C, MACKAY D J C. Low density parity check codes over GF(q)[J]. IEEE Commun Lett, 1998, 2(6):165-167.
  • 3HASSANI S, HAMON M, P'ENARD E A comparison study of binary and non-binary LDPC codes decoding[A]. Proc Software, Interna- tional Conference on Telecommunications and Computer Networks[C]. Dalmatia, Croatia, 2010. 355-359.
  • 4HU X Y, ELEFTHERIOU E. Binary representation of cycle tanner- graph GF(2q) codes[A]. Proc IEEE Int Conf Commun[C]. Pads, France, 2004. 528-532.
  • 5LI Ca, FAIR I J, KRZYMIEN W A. Density evolution for nonbinary LDPC codes under gaussian approximation[J]. IEEE Trans Inform Theory, 2009, 55(3):997-1015.
  • 6ZENG L, LAN L, TAI Y, et al. Constructions of nonbinary quasi- cyclic LDPC codes: a finite field approach[J]. IEEE Trans Commun, 2008, 56(4):545-554.
  • 7ZENG L, LAN L, TAI Y, et al. Constructions of nonbinary quasi- cyclic LDPC codes: a t-mite geometry approach[J]. IEEE Trans Com- mun, 2008, 56(3):378-587.
  • 8Supplement to IEEE Standard for Information Technology-Telecomm- unications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Higher-Speed Physical Layer Extension in the 5 GHz Band[S]. 2003.
  • 9MACKAY D J C, DAVEY M C. Evaluation of gallager codes for short block length and high rate application[A]. Proc IMA International Conference on Mathematic and Its Applications: Codes, Systems and Graphical Models[C]. New York, USA, 2000. 113-133.
  • 10DECLERCQ D, FOSSORIER M. Extended min-sum algorithms for decoding LDPC codes over GF(q)[J], IEEE Trans Inform Theory, 2007, 55(4):633-643.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部