摘要
图G的Laplace矩阵的谱是由L(G)的所有特征值构成的.研究了一类重要的互连网络拓扑结构折叠立方体网络Qfn的Laplace矩阵的谱.由于折叠立方体Qfn是在超立方体Qn的基础上增加了互补边形成的,利用从Qn的Laplace矩阵An构造Qfn的Laplace矩阵Bn的对偶矩阵Cn=An-I*n+In的方法,确定了Bn和Cn的关系为︱Bn+1︱=︱Bn ︱︱Cn-4In︱,从而确定了折叠立方体的Laplace矩阵Bn的谱.
The spectra of Laplacian matrix of graph G consist of all eigenvalues of L(G). The Laplace spectra of folded hypercube Qf. are studied, which are important interconnection network topological structure. hypercube of Laplace Bn4-1 I The n dimensional folded hypercube is an undirected graph obtained from n dimensional by adding all complementary edges. By means of Laplacian matrix An of Q., the dual matrix matrix Bn of Qfn is constructed as C =An--12 +L, the relationship between Bn and Cn is Bn I ICn--4I I and the spectra of Laplace matrix B. of Q are obtained.
出处
《大连理工大学学报》
EI
CAS
CSCD
北大核心
2013年第5期777-780,共4页
Journal of Dalian University of Technology
基金
国家自然科学基金资助项目(61170303
10671191
60973014)
高等学校博士学科点专项科研基金资助项目(200801411073)