期刊文献+

基于力插值的非线性梁柱单元中固定端部求积节点的积分方法 被引量:2

INTEGRATION METHODS FOR FIXED INTEGRATION POINT AT THE END OF FORCE-BASED BEAM-COLUMN ELEMENTS
原文传递
导出
摘要 构件进入非线性时,塑性区域一般出现在构件的端部,然而目前有限元软件常用的高斯-勒让德积分方法在端部没有求积节点,这将直接影响数值模拟的精度。该文提出在基于力插值的非线性梁柱单元中使用固定端部求积节点的积分方法,并通过OpenSees进行二次开发实现了该方法。实例分析表明,相同的积分点个数,固定一端求积节点的高斯-拉道积分方法和固定两端求积节点的高斯-洛巴托积分方法具有较高的精度,而固定两端求积节点的牛顿-科茨积分方法精度稍低,但均明显优于高斯-勒让德积分方法。建议在非线性分析中采用高斯-拉道积分方法或者高斯-洛巴托积分方法。 The plastic hinge area generally appears at the ends because of the nonlinear material response of beam-column members, but there is no integration point fixed at the end of the element for Gauss-Legendre Integration that is commonly used in FE programs. So an integration method for the fixed integration point at the ends of the element is proposed and developed based on OpenSees. The study case shows that the result of Gauss-Radau integration (it places an integration point at only one end of the element) and Gauss-Lobatto integration (it places an integration point at each end of the element) is better than the result of Newton-Cotes integration (it also places an integration point at each end of the element), but they all perform better than the result of Gauss-Legendre integration. It is suggested to use Gauss-Radau integration or Gauss-Lobatto integration in the nonlinear analysis.
出处 《工程力学》 EI CSCD 北大核心 2013年第9期22-27,共6页 Engineering Mechanics
基金 地震行业科研专项“不同建筑废墟结构被压埋人员搜救关键技术”项目(201208019) 中国地震局工程力学研究所中央级公益性研究所基本科研业务费专项项目(2010A04)
关键词 基于力插值梁柱单元 积分方法 非线性分析 求积节点 滞回曲线 force-based beam-column element integration methods nonlinear analysis integration point hysteretic curves
  • 相关文献

参考文献12

  • 1Scott M H, Fenves G L. Plastic hinge integration methods for force-based beam-column elements [J]. Journal of Structural Engineering, ASCE, 2006, 132(2): 244- 252.
  • 2Silvia Mazzoni, Frank McKenna, Michael H. Scott and Gregory L. Fenves. OpenSees Users Manual [R]. PEER, University of California, Berkeley, 2004.
  • 3Spacone E, Ciampi V., Filippou F C. Mixed formulation of nonlinear beam finite element [J]. Computers and Structures, 1996, 58:71-83.
  • 4Scott M H, Hamutcuoglu O M. Numerically consistent regularization of force-based frame elements [J]. International Journal for Numerical Methods in Engineering, 2008, 76(10): 1612- 1631.
  • 5Abramowitz M, Stegun C A. Handbook of mathematical functions with formulas, graphs, and mathematical tables [M]. 9th ed, Dover, New York, NY, 1972: 355-375.
  • 6Mo Y L, Wang S J. Seismic behavior of RC columns with various tie configurations [J]. Journal of Structural Engineering, ASCE, 2000, 126:1122- 1130.
  • 7Camata G, Spacone E, Zarnic R. Experimental and nonlinear finite element studies of RC beams strengthened with FRP plates [J]. Composites, 2007, 1(2) 277-288.
  • 8Limkatanyu S, Spacone. Frame element with lateral deformable supports: formulations and numerical validations [J]. Computers and Structures, 2006, 8(4): 942- 954.
  • 9Amer M Elsouri, Mohamed H Harajli. Seismic repair and strengthening of lap splices in RC columns: carbon fiber-reinforced polymer versus steel confinement [J]. Journal of Composites for Construction, 2011, 15(5): 721 -729.
  • 10禚一,李忠献.钢筋混凝土纤维梁柱单元实用模拟平台[J].工程力学,2011,28(4):102-108. 被引量:33

二级参考文献2

共引文献32

同被引文献27

  • 1Zhao, Jian,Sritharan, Sri.Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures[].ACI Structural Journal.2007
  • 2Sashi K Kunnath.Cumulative seismic damage of reinforced concrete bridges piers[]..1997
  • 3Mazzoni S,Mc Kenna F,Scott MH.Open Sees command language manual[]..2007
  • 4Freeman S A, Nieoletti J P, Tyrell J V. Evaluation of existing buildings for seismic risk-a ease study of Puget Sound Naval Shipyard[ R]. Bremer ton, Washington, Proc. 1st U.S. National Conf. Earthquake Engng. EERI, Berkeley, 1975:113-122.
  • 5Fajfar P, Gaspersic P. The N2 method for the seismic damage analysis of RC buihtings[ J ]. Earthquake Engineering & Structural Dynamics1996, 25(1): 31 -46.
  • 6Chopra A K, Goel R K, Chintanapakdee C. Evaluation of a modified MPA procedure assuming higher modes as elastic to estimate seismic demands [J]. Earthquake Spectra, 2004, 20(3) : 757 -778.
  • 7Chopra A K, Goel R K. A modal pushover analysis procedure for estimating seismic demands for buildings [ J ]. Earthquake Engineering & Struc- tural Dynamics, 2002, 31 (3) : 561 - 582.
  • 8Chopra A K, Goel R K. A modal pushover analysis procedure to estimate seismic demands for unsymmetric-plan buildings[ J]. Earthquake Engi- neering & Structural Dynamics, 2004, 33 ( 8 ) : 903 - 927.
  • 9Bellman RE, Casti J. Differential quadrature and long-term intergration[ J]. Journal of Mathematical Analysis and Applications, 1971, 34 (2) : 235 - 238.
  • 10Bert C W, Malik M. Differential quadrature method in computational mechanics[ J ]. Applied Mechanics Reviews, 1996, 49 (1) : 1 -28.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部