期刊文献+

双语主题跨语言伪相关反馈 被引量:6

Cross-Lingual Pseudo Relevance Feedback Based on Bilingual Topics
原文传递
导出
摘要 面向跨语言信息检索任务提出了一个引入双语主题的跨语言伪相关反馈模型.将潜在狄利克雷分配模型扩展为能同时对双语文档建模的主题模型,其中每个主题既可以生成源语言词项,也可以生成目标语言词项;为查询式选择相关的双语主题,并利用其中的相关词项对查询翻译进行优化扩展,获得用于二次检索的新查询.实验结果表明,基于该反馈模型的跨语言检索效果优于其他基于单语主题模型和向量空间模型等反馈策略. A cross-lingual pseudo relevance feedback model based on bilingual topics is proposed for cross language information retrieval task. The latent Dirichlet allocation (LDA) model is extended to the bilingual topic model, each topic could generate a source language token and a target language token. A strategy on how to choose topics and words for cross language query expansion is given, and the secondary retrieval is performed on the basis of the refined query translation. Experiments show that this model out- performs monolingual LDA-based feedback method as well as classical techniques based on vector space model.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2013年第4期81-84,共4页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(61273365) 国家高技术研究发展计划项目(2012AA011104)
关键词 伪相关反馈 潜在狄利克雷分配 双语主题 跨语言信息检索 查询扩展 pseudo relevance feedback latent Dirichlet allocation bilingual topics cross language in-formation retrieval query expansion
  • 相关文献

参考文献7

  • 1Blei D M, Jordan M J. Latent dirichlet allocation[J]. Jour- nal of Machine Learning Research, 2003(3): 993-1022.
  • 2Wei Xing, Bruce W. LDA-based document models for Ad-hoc retrieval[ C ]//Proceedings of the 29h Annual In- ternational ACM SIGIR Conference on Research and De- velopment in Information Retrieval (SIGIR2006). Seat- tle: ACM, 2006:178 - 185.
  • 3Wang Ai, Li Yaodong, Wang Wei. Crosslanguage infor- mation retrieval based on LDA [ C ] //IEEE International Conference on Intelligent Computing and Intelligent Sys- tems( ICIS 2009). Shanghai: IEEE, 2009 : 485-490.
  • 4Ye Zheng, Huang Xiangji, Lin Hongfei. Finding a good query-related topic for boosting pseudo relevance feedback [ J]. Journal of the American Society for Information Sci- ence and Technology, 2011, 62(4) : 748-760.
  • 5Wang Xuwen, Zhang Qiang, Wang Xiaojie, et al. LDA based pseudo relevance feedback for cross language infor- mation retrieval [ C ]//IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS2012). Hangzhou : IEEE, 2012 : 1993-1998.
  • 6Mimno D, Wallach H M, Naradowsky J, et al. Polylin- gual topic models[ C]//Proceedings of the 2009 Confer- ence on Empirical Methods in Natural Language Process- ing (EMNLP2009). Singapore: ACL, 2009 : 880-889.
  • 7Ivan Vuli' c, Wim De Smet, Marie-Francine Moens. Identifying word translations from comparable corpora using latent topic models [ C ] //Proceedings of the 49'h Annual Meeting of the Association for Computational Lin- guistics: shortpapers ( ACL2011 ). Portland, Oregon: ACL, 2011: 479-484.

同被引文献37

  • 1Bhatnagar P, Pareek N. Improving Pseudo-Relevance Feedback Based Query Expansion Using Genetic Fuzzy Approach and Semantic Similarity Notion.Journal of Information Science, 2014, 40 (4) : 523-537.
  • 2Manning CD, Raghavan P, Schiitze H. Introduction to Information Retrieval. Cambridge, UK: Cambridge University Press, 2008.
  • 3Harter S P. Online Information Retrieval: Concepts, Principles, and Techniques. Salt Lake City, USA: Academic Press, 1986.
  • 4BhogalJ, Macfarlane A, Smith P. A Review of Ontology Based Query Expansion. Information Processing & Management, 2007 , 43 (4) : 866-886.
  • 5Lee CJ, Croft W B. Cross-Language Pseudo-Relevance Feedback Techniques for Informal Text / / Proc of the 36th European Conference on Information Retrieval. Amsterdam, The Netherlands, 2014: 260-272.
  • 6Jiang L, Mitamura T, Yu S I, et al. Zero-Example Event Search Using Multi-modal Pseudo Relevance Feedback / / Proc of the International Conference on Multimedia Retrieval. Glasgow, UK, 2014: 297-304.
  • 7Cronen-Townsend S, Zhou Y, Croft W B. A Framework for Selective Query Expansion / / Proc of the 13th ACM International Conference on Information and Knowledge Management. Washington, USA, 2004: 236-237.
  • 8Cronen-Townsend S, Zhou Y, Croft W B. Predicting Query Perfonnance / / Proc of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Tampere, Finland, 2002: 299 - 306.
  • 9Zhou D, Lawless S, Wade V. Improving Search via Personalized Query Expansion Using Social Media. Information Retrieval , 2012, 15 (3/4) : 218-242.
  • 10He B, Ounis 1. Studying Query Expansion Effectiveness / / Proc of the 31 st European Conference on Information Retrieval Research. Toulouse, France, 2009: 611-619.

引证文献6

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部