摘要
研究了自然环境下的成熟苹果彩色图像,结果表明:成熟苹果颜色与背景色大都存在明显差异。从颜色空间角度来说,目标和背景分布于不同的区域。根据这一特点,提出了基于样本颜色空间的目标提取算法。首先,由苹果样本图像在L*a*b*空间中构建样本颜色空间,并用数学形态学对样本颜色空间进行优化;然后,依据样本颜色空间对苹果彩色图像进行目标识别,对于远景深小目标物和严重遮挡的目标物,在样本空间识别的基础上进行二值化,运用形态学结构元素法进行处理;最后,得到了理想的分割效果,识别率高。
This paper studied the color images of mature apple in natural environment,there is a general distinction between mature apple's color and the background.Apple and background distributed in different area of color space.According to this characteristic,this paper proposed an object extraction algorithm based on sample color space.First we construct the sample color space in L*a* b*space by using apple samples' image and using mathematical morphology to optimized it.Then recognised the apple target according to the sample color space.For the small target of depth of field and serious keep out targets,we make them into binarized images and use morphology structure element again to processing them.At last we got the ideal segmentation effect with high recognition rate.
出处
《农机化研究》
北大核心
2013年第10期46-48,59,共4页
Journal of Agricultural Mechanization Research
基金
湖北省自然科学基金项目(2011CDB353)