期刊文献+

基于人工神经网络及正交多项式回归分析的H13模具钢热处理工艺研究 被引量:4

Research of heat treatment process of H13 die steel based on artificial neural networks and orthogonal polynomial regression analysis
原文传递
导出
摘要 用BP人工神经网络、正交多项式回归分析及材料微观分析方法研究了热处理工艺对H13钢硬度的影响。结果表明,BP网络能根据淬火及回火温度精确预测H13钢热处理后的硬度。BP网络及正交多项式回归模型,均能用于研究淬火及回火温度对硬度的影响规律。模型研究结果表明,H13钢热处理时,淬火温度、第一次及第二次回火温度对硬度的影响显著,显著性水平为0.01。经980~1100℃淬火及540~620℃二次回火,H13钢的硬度在40~57 HRC范围;在给定的淬火温度下,随回火温度的提高硬度急剧降低,第二次回火温度比第一次回火温度对硬度的影响更大;在给定的回火温度下,淬火温度的增加使二次回火硬度增加约4 HRC;在1040℃淬火时,达到50~53 HRC硬度的回火温度区间最大;随淬火温度的提高,达到40~49 HRC硬度的回火温度区间减小。 Effect of heat treatment process on hardness of H13 steel was studied using a neural network with a back propagation algorithm ( BP network) , orthogonal polynomial regression and microstructural study methods. The results show that BP network can accurately predict the hardness of H13 steel according to quenching and tempering temperature. The trained BP network and hardness contour plot drawing from orthogonal polynomial regression equation were then applied to research the relation between hardness and quenching and tempering temperature. Quenching temperature, first and second tempering temperature have significant effect on hardness, the significance levels of which are 0.01. The hardness of H13 steel is in the range of 40-57 HRC, after quenched at 980-1100℃ and twice tempered in the range of 540-620 ℃. Hardness decreases with the increase of tempering temperature for certain quenching temperature. The second tempering has more significant influence on hardness than the first tempering. Tempering hardness increases about 4 HRC with quenching temperature increasing from 980 ℃ to 1100 ℃. When quenching temperature at 1040 ℃ , tempering temperature range achieves the maximum for tempering hardness in the range of 50-53 HRC, so those hardness can he obtained in wider tempering temperature range. Tempering temperature range decreases for the hardness in the range of 40-49 HRC, with quenching temperature increasing.
出处 《金属热处理》 CAS CSCD 北大核心 2013年第9期5-9,共5页 Heat Treatment of Metals
基金 国家973计划资助项目(2012CB025906)
关键词 H13钢 热处理工艺 人工神经网络 正交多项式回归 硬度 H13 die steel heat treatment process artificial neural networks orthogonal polynomial regression hardness
  • 相关文献

参考文献10

  • 1Bahrami A, Mousavi Anijdan S H, Golozar M A, et al. Effects of conventional heat treatment on wear resistance of AISI H13 tool steel [ J]. Wear, 2005, 258 : 846-851.
  • 2陈蕴博,岳丽杰.机械工程材料优选方法的研究现状[J].机械工程学报,2007,43(1):19-24. 被引量:20
  • 3陈蕴博,左秀荣,王淼辉,李勇.人工神经网络在钢铁材料研究中的应用[J].材料导报,2009,23(7):1-4. 被引量:11
  • 4Li Guobin, Li Xiangzhi, Wu Jianjun. Study of the thermal fatigue crack initial life of H13 and H21 steels[ J]. Journal of Materials Processing Technology, 1998, 74:23-26.
  • 5林高用,郑小燕.热处理工艺对H13钢组织与性能的影响[J].热加工工艺,2007,36(4):46-48. 被引量:21
  • 6Dobrzafiski L A, Kowalski M, Madejski J. Methodology of the mechanical properties prediction for the metallurgical products from the engineering steels using the Artificial Intelligence methods[ J]. Journal of Materials Processing Technology, 2005,164-165 : 1500-1509.
  • 7Xu Liujie, Xing Jiandong, Wei Shizhong, et al. Optimization of heat treatment technique of high-vanadium high-speed steel based on back- propagation neural networks [ J ]. Materials and Design, 2007, 28 (5) : 1425-1432.
  • 8由伟,白秉哲,方鸿生,谢锡善.用人工神经网络模型预测钢的奥氏体形成温度[J].金属学报,2004,40(11):1133-1137. 被引量:7
  • 9陈红桔,刘清友.模具钢P20的动态断裂韧性[J].钢铁研究学报,1998,10(2):46-50. 被引量:5
  • 10McHugh K M, Lin Y, Zhou Y, et al. Influence of cooling rate on phase formation in spray-formed H13 tool steel[ J]. Materials Science and Engineering A, 2008, 477 : 50-57.

二级参考文献48

共引文献54

同被引文献26

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部