期刊文献+

飞行器变体机翼结构设计与仿真 被引量:3

Simulation Research on Morphing Wing Based on Sea Gull Morphology
下载PDF
导出
摘要 针对变体飞行器在低雷诺数下机动性能力不足并且稳定性差的问题,设计提出一种新型变体机翼构型。首先深入研究海鸥的骨骼结构与飞行中的气动外形配置,利用空气动力学对海鸥气动力参数进行估算,计算所得气动参数基本满足海鸥实际飞行要求。进而抽象简化海鸥翅膀骨骼羽毛结构,并改变关节角度适合变体机翼的四自由度机构,采用气动布局分析与设计软件对机构进行仿真,优化结果能实现海鸥飞行的各种姿态外形例如起飞\降落、巡航、俯冲的同时又有较高升阻比。表明大尺度的变体可以显著改变飞行器的升力、阻力和升阻比,能够使可变体飞行器自主适应多种环境和任务,因而在全飞行周期中比传统固定外形飞行器具有更优的性能。 An adaptive air foil wing was developed to improve the maneuverability and stability of air vehicles flying at low Reynolds numbers.We studied the sea gull bone structure and flying pneumatic shape configuration indepths.We evaluated the lift-to-drag ratio of the sea gull by utilizing aerodynamics.The result shows that it satisfies the actual flying condition.And then simplified sea gull wing bones and feather structure,we designed a morphing wing with four freedoms that can change joint angles purposefully.A vortex-lattice computational aerodynamics package was used to simulate the flight characteristics of various aircraft configurations.The results showe the department of joint angles in order to allow the vehicles to configure for missions with disparate aerodynamic requirements,such as takeoff/landing,cruise and deep descend.The results demonstrate that large scale morphing can considerably change the aerodynamic characteristics of a flight vehicle,such as its lift,drag and lift-to-drag ratio,etc.,which can enable the adaptation of morphing flight vehicles in multi environments and multi missions,and ultimately lead to better performance for morphing flight vehicles in comparison with conventional fixed-configuration flight vehicles.
出处 《计算机仿真》 CSCD 北大核心 2013年第9期36-40,共5页 Computer Simulation
基金 自然科学基金(51075207) 航空基金(2011ZA52013)
关键词 变体机翼 仿生设计 空气动力学 气动布局 形态学 Morphing wing Bionic design Aerodynamics Aerodynamic configuration Morphology
  • 相关文献

参考文献17

  • 1V A Tucker and G.C.Parrot Aerodynamics of Gliding Flight in a Falcon and Other Birds[J].Journal of Experimental Biology,Great Britain,1970,52:345-367.
  • 2A L R.Thomas and G.K.Taylor.Animal Flight Dynamics I.Stability in Gliding Fligh[J]t,Journal of Theoretical Biology,2001,212:399-424.
  • 3J Mueller.Fixed and flapping wing aerodynamics for micro air vehicle applications[M].Virginia:Smerican Institute of Aeronautics and Astronautics,2001.
  • 4T Pornsin-Sisirak,et al.MEMS wing technology for a batterypowered omithopter[C].13th IEEE international Conference on Micro Electro Mechanical Systems,(MEMS'00),Miyazaki,Japan,2000,1:799-804.
  • 5J Toon.Flying on mars[R].Georgia tech research horizons,2001,19(1):19-23.
  • 6R C Michelson,S Reece.Update on flapping wing micro air vehicle research ongoing work to develop a flapping wing,crawling "Entomopter[C].In:13th Bristol International RPV Conference.Bristol,England,1998-3.
  • 7A Colozza.Planetary exploration using biomimetics:an entomopter for flight on mars[C].In:NIAC Fellows Conference.NASA Ames Research Center,2001-6.
  • 8R SFear,et al.Wing transmission for a micromechanical flying insect[C].IEEE Int.Conf.on Robotics and automation.San Francisco,CA,2000:1509-1515.
  • 9P Scott.A bug's lift-the Defense Department is looking for a few good mechanical insects[J].Scientific American,1999,280,(4):51-52.
  • 10曾锐,昂海松.仿鸟复合振动的扑翼气动分析[J].南京航空航天大学学报,2003,35(1):6-12. 被引量:53

二级参考文献17

  • 1周建华,王姝歆,颜景平.PZT在拍翅式仿昆微型飞行机器人动力系统中的应用[J].制造业自动化,2005,27(2):30-31. 被引量:1
  • 2Grasmeyer M, Keennon T. Development of the black widow micro air vehicle[C]. Reno: American Institute of Aeronautics and Astronautics. Aerospace Sciences Meeting and Exhibit, 2001.
  • 3C P Ellington. The novel aerodynamics of insect flight: applica tions to microair vehieles[J]. Experimental Biology, 1999 (3) :3 439 - 3 448.
  • 4M H Dickinson, Lehmann F O, Sanjay P S. Wing rotation and the aerodynamic basis of insect flight [J ]. Science, 1999 (2) : 1 954-1 960.
  • 5Sun M, Tan J. Unsteady aerodynamic force generation by a model fruit fly wing[J]. Experimental Biology,2002(5):55- 70.
  • 6BRICH J M , DICKINSON M H. Spanwise flow and the attachment of the leading edge vortex on insect wings[ J ]. Nature,2001 (4):729 733.
  • 7Zaeem A. Khan. Design of flapping mechanisms based on trans-verse bending phenomena in insects [A], IEEE International Conference on Robotics and Automation[ C]. Washington DC . IEEE Press and IEEE Computer Society Press, 2006:2 323 - 2 328.
  • 8SITTIM. PZT actuated fourbar mechanism with two flexible links for micromechanical flying insect thorax[A]. IEEE International Conference on Robotics and Automation [ C]. Washington DC: IEEE Computer Society Press,2001:3 893 - 3 900.
  • 9Zaecm A Khan, S K Agrawal. Design of a mechanism for biaxial rotation of a wing for a hovering vehicle[J]. IEEE Transactions on mechatronics, 2006, 11 (2) : 145 - 153.
  • 10[1]Katz J, Plotkin A. Low speed aerodynamics: From wing theory to panel methods[M].New York: McGraw-Hill Book Co,1991

共引文献55

同被引文献17

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部