期刊文献+

基于WNN的亚法糖厂澄清过程工艺指标建模 被引量:1

Modeling of Process Index for Sugar Mill Clarification Based on WNN
下载PDF
导出
摘要 研究亚硫酸制糖生产中澄清过程工艺指标的优化预测问题。对亚法糖厂澄清过程操作参数进行优化可以确保各项工艺指标满足生产要求,提高白糖的品质和产量,但目前各项工艺指标无法全部实现在线检测,且人工化验滞后时间长,难以及时对生产过程的操作参数进行优化。为了解决上述问题,根据澄清过程的生产工艺要求和大量的现场数据,建立用小波神经网络(Wavelet Neural Network,WNN)的澄清过程工艺指标预测模型,并与BP网络模型进行了性能比较分析。仿真结果表明:基于WNN的糖厂澄清过程工艺指标预测模型,可以达到对澄清工程工艺指标的预测作用,进行预测精度高、收敛速度快,优化预测效果比BP模型好。 Clarification process is one of the most important processes of cane sugar produced in sulfitation process sugar mill,the optimization of the clarification process operating parameters can ensure that each technical index meets the production requirements,so that to improve the quality and yield of sugar.But it is hard to achieve operating parameters optimize immediately because not all index can be obtained online and artificial test takes long time.In order to solve the above problems,according to the principle of clarification process and the massive field data,the wavelet neural network (WNN) model was built,and compared with the BP one.Simulation results show that the WNN model has better precision and more fast convergence rate than the BP model.The WNN model can satisfy the sugar mill production requirements and attain clarification process technical index prediction effect.
出处 《计算机仿真》 CSCD 北大核心 2013年第9期327-330,360,共5页 Computer Simulation
基金 国家自然科学基金资助项目(60964002) 广西自然科学基金项目(0991057)
关键词 澄清过程 预测模型 小波神经网络 工艺指标 Clarification process Predictive model WNN Technical index
  • 相关文献

参考文献2

二级参考文献17

  • 1贾同军,姬光荣,时鹏,纪芳,张丽.一种基于遗传算法的小波神经网[J].系统仿真学报,2001,13(z1):126-127. 被引量:18
  • 2胡玉霞,高金峰.一种预测混沌时间序列的模糊神经网络方法[J].物理学报,2005,54(11):5034-5038. 被引量:15
  • 3J.D POWELL.Radial Basis Function Approscimations to Poly-nomials[C].Proc.of 12th Biennial Numerial Analysis Conf., 1987,223-241.
  • 4陈其斌,周重吉.甘蔗制糖手册(第十二版)[M].广州:华南理工大学出版社,1993.
  • 5CHEN S.Nonlinear time series modeling and prediction using Gaussian RBF network with enhanced clustering and RLS learning[J]. Electronics Letters, 1995,31 (2) : 319-329.
  • 6闫华,魏平,肖先赐.基于Bernstein多项式的自适应混沌时间序列预测算法[J].物理学报,2007,56(9):5111-5118. 被引量:18
  • 7ZHANG QING-HUA, BENVENISTE A. Wavelet networks [ J ] . IEEE transactions on neural networks, 1992, 3(6): 889 -898.
  • 8ZHANG J, WALTER G G, MIAO Y B, et al. Wavelet neural networks for function learning[J]. IEEE Transactions on Signal Processing, 1995, 43(6) : 1485 - 1497.
  • 9De JONG K A. Genetic algorithms: A 25 years perspective[ C]// Computational Intelligence Imitating Life. New York: IEEE Press, 1994:125 - 134.
  • 10孙泽行,胡绍海,张思东,侯唯一.BP 网络中的熵函数准则(英文)[J].北方交通大学学报,1997,21(5):543-547. 被引量:7

共引文献9

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部