期刊文献+

一种采用云自适应粒子群算法的盲源分离 被引量:2

One Kind of Blind Source Separation Applying for Cloud Adaptive Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 针对大多盲源分离算法全局收敛性能不理想,收敛速度慢的缺陷,借鉴自适应粒子群算法的思想,利用云模型中云滴的随机性和稳定倾向性特点,提出一种云理论的自适应粒子群(CAPSO)盲源分离算法,以分离信号的峭度为目标函数,用自适应调整策略把粒子群分为三个子群,根据云方法修改普通子群的惯性权重,使惯性权重随着适应度值自适应调整。仿真结果表明,改进算法能完成含噪信号分离,并且有效地避免了早熟收敛,较基本PSO提高了全局搜索能力和收敛速度,分离效果好。 To overcome the shortcomings of the many blind source separation algorithm methods,such as the global convergence performance,and have many problems such as Slow convergence speed.One kind of blind source separation applying for Cloud adaptive Particle swarm optimization algorithm,was proposed.CAPSO is based on both the idea of PSO and the properties of randomness and stable tendency of a normal cloud model.it takes the kurtosis of mixtures as a contrast function.Based on the Adaptive adjustment strategy,the particle swarm is divided into three populations.It modifies the inertia weight using a cloud method,the inertia weight depends on the fitness adjustment adaptively.Experimental results show CAPSO can separate signal completing the gauss noise,can efficiently alleviate the problem of premature convergence and improve the global convergence ability and enhance the rate of convergence than PSO.
出处 《计算机仿真》 CSCD 北大核心 2013年第9期340-343,353,共5页 Computer Simulation
基金 新疆维吾尔自治区自然科学基金资助项目(2011211A010)
关键词 盲源分离 惯性权重 云理论 云自适应粒子群算法 Blind source separation Inertia weight Cloud theory Cloud adaptive particle swarm optimization algorithm(CAPSO)
  • 相关文献

参考文献8

  • 1C Jutten,J Herault.Space or Time Adaptive Signal Processing by Neural Network Model[C].Proceeding of IEEE international conference on Neural Networks for Computing,Snowbird,USA,1986:206-211.
  • 2Y Tang,J P Li.Normalized natural gradient in independent component analysis[J].Signal Processing,2010,90 (9):2773-2777.
  • 3谢平,李红亮,黄双峰.一种盲源分离的优先进化自适应遗传算法[J].计算机仿真,2009,26(6):220-223. 被引量:4
  • 4张朝柱,张健沛,孙晓东.基于自适应粒子群优化的盲源分离[J].系统工程与电子技术,2009,31(6):1275-1278. 被引量:19
  • 5陈晋央 吴瑛.基于独立分量分析的通信信号盲分离算法研究.信号处理,2009,:114-117.
  • 6J Kennedy,R Eberhart.Particle swarm optimization[C].Proceeding of IEEE international conference on Neural Networks,Piscataway,NJ,1995,(4):1942-1948.
  • 7Y Shi,R Eberhart.A modified particle swarm optimizer[C].Proceedings of the IEEE Congress on Evolutionary Computation,Piscataway,NJ:IEEE Perss,1998:69-73.
  • 8戴朝华,朱云芳,陈维荣,林建辉.云遗传算法及其应用[J].电子学报,2007,35(7):1419-1424. 被引量:84

二级参考文献27

  • 1刘常昱,李德毅,杜鹢,韩旭.正态云模型的统计分析[J].信息与控制,2005,34(2):236-239. 被引量:210
  • 2李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1252
  • 3韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122
  • 4张贤达.时间序列分析---高阶统计量方法[M].北京:清华大学出版社,1999.
  • 5P Comon. Independent component analysis, a new concept [ J ]. Signal Processing, 2006,16(44) :2768 -:2779.
  • 6C Jutten, C Herault. Blind Separation of Sources Partl : An Adaptive Algo - Based on Neurometic archi · teeture [ J ]. Signal Processing, 2005,18(24) :1 - 10.
  • 7Common P. Independent component analysis. A new concept? [J]. Signal Processing, 1994,36 (3) : 287 - 314.
  • 8Cichoki A, Unbehauen R, Moszczynski R.A new on-line adaptive learning algorithm for blind separation of source signals[C]//Proc. ISANN, 1994:406 - 411.
  • 9Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution[J]. Neural Computation,1997,17(1) :25 -46.
  • 10Hyvarinen A. Fast and robust fixed--point algorithms for independent component analysis[J]. IEEE Trans. on Neural Networks, 1999,10(3):626 - 634.

共引文献104

同被引文献16

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部