期刊文献+

拓扑格、(拟)闭包、(拟)内部及对偶方法

Topological Lattices,(Quasi-) Closures,(Quasi-) Interiors and Duality Methods
原文传递
导出
摘要 用对偶原理讨论了完全分配格L上(拟)闭包及(拟)内部运算的性质,证明了格上的开、闭拓扑、学在非F格情形等价,深化了现行的相关结果.特别,对L上的拟闭包(拟内部)运算引入了一种等价关系,证明了同一等价类中的所有运算导出同一闭(开)拓扑,并证明了任一等价类中恰有一个元是闭包(内部)运算且是该类中的最大(最小)元. By the duality principle, we discuss the properties of (quasi-)closure operations and (quasi-)interior operations on completely distributive lattice L, prove that two (open and closed) theories of topology on lattice are equivalent to each other when lattices are not F-lattices, and deepen the current correlated results. Particularly, we introduce an equivalent relation on the whole of quasi-closure (quasi-interior) operations on L, prove that all operations in each equivalent class derive the same closed (open) topology, and prove that there exists exactly one closure (interior) operation that is the greatest (least) element in each equivalent class.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第18期223-225,共3页 Mathematics in Practice and Theory
关键词 拓扑格 (拟)闭包 (拟)内部 对偶原理 简化证明 topological lattice (quasi-)closure (quasi-)interior duality principle simplified proof
  • 相关文献

参考文献3

  • 1王国俊.杨忠道定理和樊畿定理在广义拓扑分子格中的推广[J].纯粹数学与应用数学,1985(试刊号)92-97.
  • 2苏淑华,王琦.拓扑空间的内部运算[J].数学的实践与认识,2010,40(2):193-195. 被引量:3
  • 3吴品三.近世代数[M].北京:人民教育出版社,1979.

二级参考文献1

  • 1Kelly J L.一般拓扑学[M].北京:科学出版社,1982.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部