期刊文献+

电动汽车电池剩余量的估测方法 被引量:1

Estimating of remaining capacity of battery for electric vehicles
下载PDF
导出
摘要 为有效地对电动汽车锂电池荷电状态(SOC)进行估算,采用自适应神经网络模糊推理系统(ANFIS)建立电池组电压降模型,再通过编写Matlab程序对BP神经网络进行训练,并用所建BP神经网络模型对SOC进行预测。经实验验证,此法精度较高且能有效预测电池的开路电压和SOC的映射关系,对延长电池寿命具有重要意义。 To estimate the remaining capacity (SOC) of lithium batteries for electric vehicles effectively, an adaptive fuzzy neural network (ANFIS) was adopted to build a voltage drop model of battery. The BP neural network was trained by MATLAB program, and the built model was used to predict the SOC. The experiments prove that this method has higher accuracy, and can predict the mapping relationship between the battery open circuit voltage and SOC effectively with a certain practicality and significance to extend the battery life.
出处 《电源技术》 CAS CSCD 北大核心 2013年第9期1542-1543,1594,共3页 Chinese Journal of Power Sources
关键词 荷电状态 自适应神经网络模糊推理系统 BP神经网络 remaining battery capacity adaptive fuzzy neural network BP neural network
  • 相关文献

参考文献4

二级参考文献11

共引文献62

同被引文献4

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部