期刊文献+

融合多特征的异源视频复制-粘贴篡改检测 被引量:1

Heterologous video copy-move forgery detection by fusing multiple features
原文传递
导出
摘要 相比传统的视频帧插入或帧删除以及视频双压缩等篡改方式,复制-粘贴篡改更能直接的改变视频内容。因此,本研究提出一种融合多特征的异源视频复制-粘贴篡改检测方法。对于经过帧内复制-粘贴篡改的视频,其视频帧内会引入一些尖锐的变化,比如线条、边缘和角点等,而二维相位一致性可以很好的检测出这些变化。同时,来自异源视频帧复制的区域块会使得帧内引入不同的模式噪声,可以利用模式噪声和二维相位一致性提取视频帧的特征,然后将特征融合进行SVM分类实验来检测篡改视频。实验表明该算法可以有效地检测异源复制-粘贴篡改的视频。 Compared with the conventional methods of video forgeries, such as frame insertion, frame deletion and doub- le compression, copy-move forgery might change the content of a video directly. Therefore, a new algorithm was pro- posed to detect video copy-move forgery by fusing multiple features. For an intra-frame copy-move tampered video, which may introduce a number of sharp transitions in frames such as lines, edges and comers. Phase congruency was known as a sensitive measure of these sharp transitions and hence was proposed as features for video forgery detection. Meanwhile, the duplicated blocks from the heterologous video could introduce different pattern noise. Therefore, the proposed algorithm could extract features of video frames from the pattern noise and 2-D phase congruency for video forgery detection, and then the merged multiple features were experimented with the support vector machine (SVM). Experimental results demonstrated that the proposed algorithm could detect video of intra-frame copy-move forgery effectively.
出处 《山东大学学报(工学版)》 CAS 北大核心 2013年第4期32-38,共7页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(61070062 61073017) 福建省高校产学合作科技重大资助项目(2012H6006) 福建省高校服务海西建设重点资助项目(2008HX200941-4-5) 福建省高等学校新世纪优秀人才支持计划资助项目(JAI1038)
关键词 复制-粘贴篡改 复制-粘贴检测 模式噪声 二维相位一致性 SVM(support VECTOR machine) copy-move forgery copy-move detection pattern noise 2-D phase congruency support vector machine
  • 相关文献

参考文献3

二级参考文献32

  • 1黄洪宇,林甲祥,陈崇成,樊明辉.离群数据挖掘综述[J].计算机应用研究,2006,23(8):8-13. 被引量:42
  • 2陈娟,夏军,尹涵春.压缩视频码流中运动矢量的提取[J].电子器件,2006,29(4):1342-1345. 被引量:4
  • 3薛安荣,鞠时光,何伟华,陈伟鹤.局部离群点挖掘算法研究[J].计算机学报,2007,30(8):1455-1463. 被引量:96
  • 4秦运龙 孙广玲 张新鹏.利用运动矢量进行视频篡改检测.计算机研究与发展,2009,46:227-233.
  • 5LUKAS J, FRIDRICH J, GOLJAN M. Digital camera identification from sensor pattern noise [ J ]. IEEE Trans- actions on Information Forensics and Security, 2006, 1 (2) : 205-214.
  • 6LUKAS J, FRIDRICH J, GOLJAN M. Detecting digital image forgeries using sensor pattern noise [ C ]//Proceedings of SPIE Electronic Imaging, Photonics West. San Jose, USA: the SPIE, 2006:362-372.
  • 7HSU C, HUNG T, LIN C, et al. Video forgery detection using correlation of noise residue [ C ]//Proceedings of the 10th Workshop on Multimedia Signal Processing. Cairns, Australia: IEEE Computer Society, 2008: 170-174.
  • 8KOBAYASHI M, OKABE T, SATO Y. Detecting video forgeries based on noise characteristics E C ]//Proceedings of the 3rd Pacific-Rim Symposium on Image and Video Technology. Berlin Heidelberg, Germany: Springer-Verlag, 2009: 306-317.
  • 9HEN M, FRIDRICH J, GOLJAN M, et al. Determining image origin and integrity using sensor noise [ J ]. IEEE Transactions on Information Forensics and Security, 2008, 3 ( 1 ) : 74-90.
  • 10BAYRAM S, SENCAR H, MEMON N. Source camera identification based on CFA interpolation[ C]//Proceedings of IEEE International Conference on Image Processing. Washington, USA: IEEE Signal Processing Society, 2005 : 69-72.

共引文献18

同被引文献12

  • 1Milani S, Fontani M, Bestagini P, et al. An over- view on video forensics[J]. APSIPA Transactions on Signal and Information Processing, 2012, 1(1) .. 1-18.
  • 2Wang W, Farid H. Exposing digital forgeries in vid- eo by detecting double MPEG compression [C]//Pro- ceedings of the 8th Workshop on Multimedia and Secu- rity. New York, USA:ACM, 2006:37-47.
  • 3Wang W, Farid H. Exposing digital forgeries in vid- eo by detecting double quantization [C] // Proceedings of the 11th ACM Workshop on Multimedia and Securi- ty. New York, USA: ACM, 2009:39-48.
  • 4Wang W, FARID H. Exposing digital forgeries in video by detecting duplication [C] // International Multimedia Conference on Proceeding of the 9th Work- shop on Multimedia and Security. Dallas, Texas, USA:ACM, 2007: 35-42.
  • 5Chao J, Jiang X H, Sun T F. A new video inter- frame tampering detection method based on optical flow consistency [C]//The llth International Work- shop on Digital-forensics and Watermarking. Shang- hai: Springer, 2012: 25-27.
  • 6Stature M C, Lin W S K, Liu J R. Temporal foren- sics and anti-forensics for motion compensated video [J]. IEEE Transaction on Information Forensics and Security, 2012, 7(4): 1315-1329.
  • 7Bestagini P, Milani S, Tagliasacchi M, et al, Local tampering detection in video sequences [C] //2013 IEEE 15th International Workshop on Multimedia Sig- nal Processing (MMSP). Pula, Italy: IEEE, 2013: 488-493.
  • 8Subramanyam A V, Emmanuel S. Video forgery de- tection using HOG features and compression proper- ties[C]//14th IEEE International Workshop on Multi- media Signal Processing (MMSP). Banff, Canada: IEEE, 2012:89-94.
  • 9Barnieh O, Van Droogenbroeck M. ViBe: A univer- sal background subtraction algorithm for video se- quences[J]. 1EEE Transactions on Image Processing, 2011, 20(6) :1709-1724.
  • 10Welch G, Bishop G. An introduction to the Kalmanfilter[C] //SIGGRAPH 2001. Los Angeles, CA: ACM, 2001.. 12-17.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部