期刊文献+

Viscoelastic plastic continuous physical model of a magnetorheological damper applied in the high speed train 被引量:1

Viscoelastic plastic continuous physical model of a magnetorheological damper applied in the high speed train
原文传递
导出
摘要 In the preliminary design stage of high-speed train smart suspension,a simple,yet accurate magnetorheological(MR)damper model whose parameters have clear physical meaning is needed.Based on the working mechanism analysis and the dynamic behavior study of the MR damper,a new consecutive viscoelastic plastics(VEP)model is proposed.A methodology to find the parameters of the proposed model directly has been proposed.The comparison with experimental results indicates that the proposed model could adequately characterize the intrinsic nonlinear behavior of the MR damper,including the hysteretic behavior,roll-off phenomenon,and the variation of the hysteresis width in terms of the frequency and magnitude of excitation.The results of experimental testing prove that the accuracy of the proposed model is higher than that of the phenomenological model while only containing four undetermined parameters with clear physical meaning.Moreover,based on the proposed VEP model,a nonlinear stiffness VEP(nkVEP)model is developed with higher precision in the hysteretic region.The nkVEP model,which can reproduce the behavior of the damper with fluctuating input current,is developed.The proposed model could predict accurately the response of the MR damper in a wide range of frequency and displacement.
出处 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第10期2433-2446,共14页 中国科学(技术科学英文版)
基金 supported by grant from the Innovation and Technology Support Program of the Hong Kong Special Administrative Region,China(Project No.ITS/241/11) the National Natural Science Foundation of China(Grant No.61134002) the National Basic Research Program of China("973" Program)(Grant No.2011CB711106)
关键词 magnetorheological (MR) damper physical model viscoelastic plastics (VEP) model nonlinear stiffness VEP (nkVEP)model parameters identification 磁流变阻尼器 物理模型 高速列车 弹性塑料 非线性行为 MR阻尼器 应用 物理意义
  • 相关文献

参考文献29

  • 1Bruni S, Goodall R, Mei T X, et al. Control and monitoring for rail- way vehicle dynamics. Vehicle Syst Dyn, 2007, 45:743-779.
  • 2Wang D H, Liao W H. Semi-active suspension systems for railway vehicles using magnetorheological dampers. Part i: System integra- tion and modelling. Vehicle Syst Dyn, 2009, 47:1305-1325.
  • 3Wang X T, Chang C C, Du F. Ac]aieving a more robust neural net- work model for control of a MR damper by signal sensitivity analysis. Neural Comput Appl, 2002, 10:330-338.
  • 4Chang C C, Zhou L. Neural network emulation of inverse dynamics for a magnetorheological damper. J Struct Eng-ASCE, 2002, 128:231-239.
  • 5Schurter K C, Roschke P N. Fuzzy modeling of a magnetorheological damper using antis. Ninth IEEE International Conference on Fuzzy Systems (Fuzz-Ieee 2000), IEEE, 2000, 1-2:122-127.
  • 6Zong L H, Gong X L, Guo C Y, et al. Inverse neuro-fuzzy MR damper model and its application in vibration control of vehicle sus- pension system. Vehicle Syst Dyn, 2012, 50:1025-1041.
  • 7Zong L H, Gong X L, Xuan S H, et al. Semi-active hoo control of high-speed railway vehicle suspension with magnetorheologicaldampers. Vehicle Syst Dyn, 2013, 51: 600-626.
  • 8Schurter K C, Roschke P N. Neuro-fuzzy control of structures using acceleration feedback. Smart Mater Struct, 2001, 10:770-779.
  • 9Biglarbegian M, Melek W, Golnaraghi F. A novel neuro-fuzzy con- troller to enhance the performance of vehicle semi-active suspension systems. Vehicle Syst Dyn, 2008, 46:691-711.
  • 10Song X B, Ahmadian M, Southward S C. Modeling magnetorheo- logical dampers with application of nonparametric approach. J Intell Mater Syst Struct, 2005, 16:421-432.

同被引文献17

  • 1刘宏友,曾京,李莉,丁问司.高速列车二系横向阻尼连续可调式半主动悬挂系统的研究[J].中国铁道科学,2012,33(4):69-74. 被引量:10
  • 2李忠继,戴焕云,田合强.比例溢流阀式半主动悬挂系统仿真研究[J].中国铁道科学,2012,33(3):67-73. 被引量:3
  • 3曾京,戴焕云,邬平波.基于开关阻尼控制的铁道客车系统的动力学性能研究[J].中国铁道科学,2004,25(6):27-31. 被引量:22
  • 4KARNOPP D, CROSBY M J, HARWOOD R A.Vibration control using semi-active force generators[J].Journal of Manufacturing Science and Engineering, 1974, 96( 2): 619-626.
  • 5KARNOPP D.Active and semi-active vibration isolation[J].Journal of Mechanical Design, 1995, 117(B): 177-185.
  • 6SPENCER B F, DYKE S J, SAIN M K, et al.Phenomenological model of a magnetorheological dampers[J].Journal of Engineering Mechanics, 1997, 123(3): 230-238.
  • 7WANG En-rong, MA Xiao-qing, RAKHELA S, et al.Modelling the hysteretic characteristics of a magnetorheological fluid damper[J].Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2003, 217(7): 537-550.
  • 8LIAO W H, WANG D H.Neural network modeling and controllers for magnetorheological fluid dampers[C]∥IEEE.The 10th IEEE International Conference on Fuzzy Systems.Melbourne: IEEE, 2001: 1323-1326.
  • 9LIAO W H, WANG D H.Semi-active suspension systems for railway vehicles using magnetorheological dampers.Part I: system integration and modelling[J].Vehicle System Dynamics, 2009, 47(11): 1305-1325.
  • 10LIAO W H, WANG D H.Semi-active suspension systems for railway vehicles using magnetorheological dampers.Part II: simulation and analysis[J].Vehicle System Dynamics, 2009, 47(12): 1439-1471.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部