期刊文献+

简化PCNN在磨粒图像颜色特征提取中的应用 被引量:6

Application of Simplified PCNN in Color Feature Extraction for Wear Particle Images
下载PDF
导出
摘要 提出了一种简化脉冲耦合神经网络(pulse coupled neural network,PCNN)的磨粒图像颜色特征提取方法,将简化PCNN分别作用于RGB磨粒图像的3个颜色分量,利用PCNN的脉冲耦合特性对颜色分量进行二值分解。通过定义图像像素捕获率把PCNN二值图像序列转化为一维时间序列,提取捕获率时间序列的均值、标准差、峰值、能量和熵作为磨粒图像的颜色特征,并将提取的特征输入最小二乘支持向量机(least square support vector machine,LS-SVM)对磨粒进行识别。研究结果表明:与单纯的颜色特征相比,PCNN颜色特征能更好地表达磨粒的颜色特征,平均识别率达到98%。 To effectively describe wear particle color characteristics,a color feature extraction method based on simplified pulse coupled neural network (PCNN) was proposed. The method applied simplified PCNN to three color components of every RGB wear particle images respectively and each color component was decomposed into a binary image sequence utilizing PCNN, and the sequences were converted to one dimensional time sequences by defining pixel capture rate. Then mean value, standard deviation, peak, energy and entropy of capture rate sequences were extracted as wear particle image color features. When the extracted features were input into least square support vector machine (LS-SVM) for wear particle recognization,average recognizabilit) reached 98%. Results indicate that the PCNN color features can better represent wear particle color characteristics compared with simplicial color features.
出处 《内燃机工程》 EI CAS CSCD 北大核心 2013年第5期69-75,共7页 Chinese Internal Combustion Engine Engineering
基金 国家自然科学基金项目(50705097) 清华大学摩擦学国家重点实验室开放基金资助项目(SKLTKF09B06)
关键词 内燃机 脉冲耦合神经网络 磨粒图像 特征提取 最小二乘支持向量机 IC engine pulse coupled neural network (PCNN) wear particle image feature extraction least square support vector machine (LS-SVM)
  • 相关文献

参考文献5

二级参考文献43

  • 1刘勍,马义德,钱志柏.一种基于交叉熵的改进型PCNN图像自动分割新方法[J].中国图象图形学报(A辑),2005,10(5):579-584. 被引量:58
  • 2Krishnapuram R, Medasani S, Jung S H, Choi Y S, Balasubramaniam R. Content-based image retrieval based on a fuzzy approach. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(10): 1185--1199.
  • 3Krishnan N, Banu M S, Christiyana C C. Content based image retrieval using dominant color identification based on foreground objects. In: Proceedings of the International Conference on Computational Intelligence and Multimedia Applications. Sivakasi, India: IEEE, 2007. 190-194.
  • 4Kohonen O, Hauta-Kasari M. Distance measures in the training phase of self-organizing map for color histogram generation in spectral image retrieval. Journal of Imaging Science and Technology, 2008, 52(2): 201-205.
  • 5Aleksandra M, Hu J Y, Emina S. Extraction of perceptually important colors and similarity measurement for image matching, retrieval, and analysis. IEEE Transactions on Image Processing, 2002, 11(11): 1238-1248.
  • 6Gagaudakis G, Rosin P L. Shape measures for image retrieval. Pattern Recognition Letters, 2003, 24(15): 2711-2721.
  • 7Bishnu A, Bhattacharya B B, Kundu M K, Murthy C A, Acharya T. Euler vector for search and retrieval of graytone images. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2005, 35(4): 801-812.
  • 8Wong W T, Shih F Y, Su T E. Shape-based image retrieval using two-level similarity measures. International Journal of Pattern Recognition and Artificial Intelligence, 2007, 21(6): 995-1016.
  • 9Alajlan N, Kamel M S, Freeman G H. Ceometry-based image retrieval in binary image databases. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(6): 1003-1013.
  • 10Li F, Dai Q H, Xu W L, Er C. Multilabel neighborhood propagation for region-based image retrieval. IEEE Transactions on Multimedia, 2008, 10(8): 1592-1604.

共引文献34

同被引文献50

引证文献6

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部