期刊文献+

应用CN-FDTD分析电磁波电阻率测井仪的电磁响应

Analyzing Response of Electromagnetic Wave Resistivity Tool by CN-FDTD
下载PDF
导出
摘要 传统FDTD受到Courant稳定性条件限制,计算时间较长,而ADI-FDTD精度又比较低,Crank-Nicolson时域有限差分方法(CN-FDTD)在时间步长上的取值远大于CFL条件时仍旧能够保持良好的计算精度。采用无条件稳定的柱坐标系Crank-Nicolson时域有限差分方法(CN-FDTD)分析了轴对称地层环境中的随钻电磁波电阻率测井仪器的电磁响应。在CN-FDTD仿真中,采用稳定双共轭梯度法(Bi-CGSTAB)作为求解器用于求解每个时间步所产生的线性方程组。通过对随钻电磁波电阻率测井仪在多层地层下的电磁响应进行数值仿真,其数值仿真结果表明CN-FDTD的计算结果准确,计算速度比普通FDTD提高3倍。 Traditional FDTD simulation time-step sizes are limited by the smallest mesh size following the Courant stability condition. This makes the FDTD method need long computing time. However the ADI-FDTD method has larger truncation and dispersion errors than those of the traditional FDTD method The CN-FDTD method can overcome the stability condition and both the tnmcation and dispersion errors are similar to those of the traditional FDTD. An unconditionally stable finite-difference time-domain (FDTD) method in cylindrical coordinates was developed to analyze electromagnetic responses under axially symmetric logging while drilling (LWD) environments. The method is based on the application of the Crank-Nicolson scheme to the FDTD method in cylindrical coordinates. In order to solve the linear system generated by the CN-FDTD at each time step, the Bi-Conjugate Gradient Stabilized method (Bi-CGSTAB) was used. Numerical results demonstrate that the CN-FDTD method is very effective and a soeeduo factor of 3 can be achieved.
出处 《系统仿真学报》 CAS CSCD 北大核心 2013年第10期2475-2480,共6页 Journal of System Simulation
关键词 随钻测井 CN-FDTD 稳定双共轭梯度法 幅度比 相位差 logging while drilling CN-FDTD Bi-CGSTAB amplitude ratio phase difference
  • 相关文献

参考文献9

  • 1马哲,林楠,杨锦舟.紧凑型随钻电磁波电阻率井眼影响补偿方法[J].录井工程,2010,21(1):7-10. 被引量:4
  • 2B Anderson. Simulation of induction logging by the finite-element method [J]. Geophysics (S0016-8033), 1984, 49(11): 1943-1958.
  • 3杜刘革,李康,孔凡敏.基于CUDA的图形处理器FDTD算法仿真研究[J].系统仿真学报,2011,23(4):668-672. 被引量:3
  • 4Q H Liu, W C Chew, M R Taherian, K A Safinya. A modeling study of electromagnetic propagation tool in complicated borehole environments [J]. Society of Petrophysieists and Well-Log Analysts, 1989, 30(6): 424-436.
  • 5T Namiki. A new FDTD algorithm based on alternating direction implicit method [J]. IEEE Transactions on Microwave Theory and Techniques (S0018-9480), 1999, 47(10): 2003-2007.
  • 6Jian Dai, Zhizhang Chen, Donglin Su, Xiaoying Zhao. Stability Analysis and Improvement of the Conformal ADI-FDTD Methods [J]. IEEE, Transactions on Antennas and propagation (S0018-926x), 2011, 59(6): 2248-2258.
  • 7Yik-Kiong Hue, Fernando L Teixeira, Luis San Martin, Michael S Bittar. Three-Dimensional Simulation of Eccentric LWD Tool Response in Boreholes Through Dipping Formations [J]. IEEE Transactions on geoscience and remote sensing (S0196-2892), 2005 43(2): 257-268.
  • 8徐侃,陈如山,杜磊,朱剑,杨阳.可编程图形处理器加速无条件稳定的Crank.NicolsonFDTD分析三维微波电路[C]//2009年全国微波毫米波会议.上海:中国电子学会微波分会,2009.
  • 9曾宪华,耿新宇,黄小燕.基于模糊神经网络的储集层含水饱和度预测[J].系统仿真学报,2003,15(5):735-736. 被引量:11

二级参考文献18

  • 1冉启全,李士伦.模糊神经网络及其在储集层油气评价中的应用[J].钻采工艺,1997,20(1):32-36. 被引量:2
  • 2焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996..
  • 3刘育骥 耿新宇 等.石油工程模糊数学[M].成都:成都科技出版社,1994..
  • 4D. T. Macune. A Compact Compensated Resistivity Tool for Logging While Drilling. SPE 98106, 2006,2.
  • 5Yamaguchi Ryo, Suzuki Hidetoshi, Takagi Yuta, Uebayashi Shinji. A Study on Accuracy of Fixed Point Arithmetic FDTD Method [J]. IEIC Technical Report (S0913-5685), 2006, 106(40): 71-76.
  • 6Krakiwsky S E, Turner L E, Okoniewski M M. Acceleration of finite-difference time-domain (FDTD) using graphics processor units (GPU) [C]// Microwave Symposium Digest, 2004 IEEE MTT-S International. USA: IEEE, 2004, 2: 1033-1036.
  • 7J Z Lei, C H Liang, Ding Wei, Zhang Yu. Study on MPI-Based Parallel Modified Conformal FDTD for 3-D Electrically Large Coated Targets by Using Effective Parameters [J]. Antennas and Wireless Propagation Letters IEEE (S1536-1225), 2008, 7(1): 175-178.
  • 8韩林.基于GPU的光波导器件FDTD并行算法研究[D].济南:山东大学,2005.
  • 9M J Inman, A Z Elsherbeni. Programming video cards for computational electromagnetics application [J]. IEEE Antennas and Propagation Mag. ($1045-9243), 2005, 47(6): 288-301.
  • 10NVIDIA Corporation Technical Staff. NVIDIA CUDA Programming Guide 2.0 [Z]. USA: NVIDIA Corporation, 2008.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部