期刊文献+

锋电位检测信号的多元小波去噪方法研究 被引量:2

Multivariate Wavelet Denoising Method for Neuronal Spike Signals
下载PDF
导出
摘要 神经元锋电位(spike)信号是研究大脑信息编码的基础,具有宽带、高频和小幅值特点,易受噪声干扰。为了提高检测信号的信噪比,根据微电极阵列记录信号中通道之间噪声相关性较强的特点,采用多元小波去噪方法对锋电位检测信号进行了噪声抑制,并基于仿真和实测数据将其与主成分(PCA)去噪算法、小波-PCA联合去噪算法进行了比较。仿真和实测数据结果表明,多元小波去噪方法不仅可以有效提高spike检测信号的信噪比,而且可以降低spike波形的畸变,为小幅值spike信号的检测和下一步分析研究奠定了良好的基础。 Spikes which are the basis of the research of brain information are sensitive to noise because of broadband, high frequency and small amplitude signals. Based on the strong correlations among the noises in different channels, a new denoising method, multivariate wavelet denoising method, was developed for improving signal-to-noise ratio (SNR) of the spike signals. The proposed methods were evaluated and compared with both the principal component analysis (PCA) denoising method and PCA-wavelet combined denoising method using both real and simulated data sets. The result of simulation and real data shows that this method can not only improve SNR but also reduce spike waveform distortion, and that it is important for the detection and the next step analysis research of spikes.
出处 《系统仿真学报》 CAS CSCD 北大核心 2013年第10期2487-2491,2498,共6页 Journal of System Simulation
基金 国家自然科学基金(60971110) 河南省科技攻关计划项目(122102210102)
关键词 微电极阵列 多元小波去噪 锋电位 信噪比 micro-electrode arrays multivariate wavelet denoising spike signal-to-noise ratio
  • 相关文献

参考文献11

  • 1Quiroga R Q, Panzeri S. Extracting information from neuronal populations: information theory and decoding approaches [J]. Nature Neuroscience Reviews (SO 165-0270), 2009, 1038(10): 173-185.
  • 2Musial P G, Baker S N, Gerstein G L. Signal-to-noise ratio improvement in multiple electrode recording [J]. Journal of Neuroseience Methods (S0165-0270), 2002, 115(1): 29-43.
  • 3Choi J H, Jung H K, Kim T. A new action potential detector using the MTEO and its effects on spike sorting systems at low signal- to-noise ratios [J]. IEEE Transactions on Biomedical Engineering (S0018-9294), 2006, 53(4): 738-746.
  • 4Oikonomou V P, Tzallas A T, Fotiadis D I. A Kalman filter based methodology for EEG spike enhancement [J]. Computer Methods and Programs in Biomedicine (S0169-2607), 2007, 85(2): 101-108.
  • 5吴丹,封洲燕,王静.微电极阵列神经元锋电位信号的去噪方法[J].浙江大学学报(工学版),2010,44(1):104-110. 被引量:8
  • 6Liu X F, Yang X Q, Zheng N N. Automatic extracellular spike detection with piecewise optimal morphological filter [J]. Neuroeomputing (S0925-2312), 2012, 79(1): 132-139.
  • 7Paralikar K J, Rao C R, Clement R S. New approaches to eliminating common-noise artifacts in recordings from intracortical mieroelectrode arrays: inter-electrode correlation and virtual referencing [J]. Journal of Neuroscience Methods (S0165-0270),2009, 181(1): 27-35.
  • 8Oweiss K G, Anderson D J. Noise reduction in multichannel neural recordings using a new array wavelet denoising algorithm [J]. Neurocomputing (S0925-2312), 2001, 38-40(6): 1687-1693.
  • 9Yang R C- Ren M W. Wavelet denoising using principal component analysis [J]. Expert Systems with Applications (S0957-4174), 2011, 38(1): 1073-1076.
  • 10Citi L, Carpaneto J. On the use of wavelet denoising and spike sorting techniques to process electroneurographic signals recorded using intraneural electrodes [J]. Journal of Neuroseienee Methods (S0165-0270), 2008, 172(2): 294-302.

二级参考文献19

  • 1罗强,田化梅,罗萍,陈琦.基于平稳小波变换的心电信号去噪研究[J].计算机与数字工程,2006,34(6):67-69. 被引量:15
  • 2封洲燕,光磊,郑晓静,王静,李淑辉.应用线性硅电极阵列检测海马场电位和单细胞动作电位[J].生物化学与生物物理进展,2007,34(4):401-407. 被引量:19
  • 3BUZSAKI G. Large-scale recording of neuronal ensembles[J].NatureNeuroseienee, 2004, 7(5): 446-451.
  • 4HOCHBERG L R, SERRUYA M D, FRIEHS G M, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia [J]. Nature, 2006, 442(7099): 164 - 171.
  • 5DONOHO D L. De-noising by soft-thresholding [J]. IEEE Transactions on Information, 1995, 41 (3) : 613 - 627.
  • 6DONOHO D L. Adapting to unknown smoothness via wavelet shrinkage [J]. Journal of the American Statistical Association, 1995, 90(432): 1200- 1224.
  • 7WEISS K G, ANDERSON D J. A new approach to array denoising[C]///Conference Record of the Thirty- Fourth Asiiomar Conference on Signals, System and Computers. [s. n.].. IEEE, 2000, 2: 1403-1407.
  • 8OWEISS K G, ANDERSON D J. Noise reduction in multichannel neural recordings using a new array wavelet denoising algorithm [J]. Neurocomputing, 2001, 38- 40:1687 - 1693.
  • 9AMINGHAFARI M G S, CHEZE N, POGGI J M. Multivariate denoising using wavelets and principal component analysis [J]. Computational Statistics and Data Analysis, 2006, 50:2371-2398.
  • 10RAO A M, JONES D L. A denoisng approach to multisensor signal estimation [J]. IEEE Transactions on Signal Processing, 2000, 48(5) : 1225 - 1234.

共引文献7

同被引文献20

  • 1Ronggen Yang,Mingwu Ren.Wavelet denoising using principal component analysis[J]. Expert Systems With Applications . 2010 (1)
  • 2Luca Citi,Jacopo Carpaneto,Ken Yoshida,Klaus-Peter Hoffmann,Klaus Peter Koch,Paolo Dario,Silvestro Micera.On the use of wavelet denoising and spike sorting techniques to process electroneurographic signals recorded using intraneural electrodes[J]. Journal of Neuroscience Methods . 2007 (2)
  • 3P.G Musial,S.N Baker,G.L Gerstein,E.A King,J.G Keating.Signal-to-noise ratio improvement in multiple electrode recording[J]. Journal of Neuroscience Methods . 2002 (1)
  • 4ZHAOHUA WU,NORDEN E. HUANG.ENSEMBLE EMPIRICAL MODE DECOMPOSITION: A NOISE-ASSISTED DATA ANALYSIS METHOD. Advances in Adaptive Data Analysis . 2009
  • 5EEIC 2011 2011 International Conference on Electric and Electronics (CHN Nanchang 2011 06 20 - 2011 06 22),Wan H.,Liu X.-Y.,Niu X.-K.,Chen S.-L.,Wang Z.-Z.,Shi L.The design and implementation of anti-interference system in neural electrophysiological experiments. Lecture Notes in Electrical Engineering . 2011
  • 6Hu, Meng,Liang, Hualou.Adaptive multiscale entropy analysis of multivariate neural data. IEEE Transactions on Biomedical Engineering . 2012
  • 7HOHL S S, CHAISANGUTHUM K S, LISBERGER S G. Sensory population decoding for visually guided movements[J]. Neuron, 2014, 79(1): 169-179.
  • 8BECEDAS J and QUIROGA R Q Real time decoding for brain-machine interface applications[ J]. Journal of Bioinformatics and Biological Engineering, 2014, 2 (1): 20 -32.
  • 9WAN Hong, LIU Xin-yu, design and implementation NIU Xiao-ke, et al. The of anti-interference system in neural electrophysiological experiments [ J ]. Electri- cal Engineering and Control, Lecture Notes in Electri- cal Engneering, 2011(98) : 605 -611.
  • 10PARALIKAR J K, RAO C R, CLEMENT R S. New approaches to eliminating common - noise artifacts in recordings from intracortical microelectrode arrays: in- ter-electrode correlation and virtual referencing [ J ]. Journal of Neuroscience Methods, 2009, 181 ( 1 ) : 27 -35.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部