期刊文献+

技术分析与超额收益率研究进展 被引量:3

THE RESEARCH ON TECHNICAL ANALYSIS AND EXCESS RETURNS
下载PDF
导出
摘要 技术分析能否帮助投资者获得超额收益率是金融理论界广泛关注的问题之一。早期理论界主要采用传统t检验方法,得出技术分析无效的结论;随着计算机的普遍应用,布鲁克等人(Brock et al)基于传统t检验存在的计量误差,采取脱靴检验方法,认为技术分析能够带来显著的超额收益率,随后,有学者认为股票收益率呈现非线性相关的特征,采用前向人工神经网络模型进行分析,得到技术分析有效的结论;然而,数据窥查效应的剔除使得技术分析获得的超额收益率减少,遗传规划模型的应用也使得技术分析有效的结论受到了较大的质疑。因此,目前对于技术分析是否有效这一问题,并没有形成一致的结论,依然有较大的研究空间。 Whether technical analysis can bring investors excess returns is one of the financial prob- lems widely concerned by theorists. Early studies mainly adopted traditional t-test method, leading to the conclusion that technical analysis was invalid; while along with the widespread computer application, many scholars, such as Brock used the bootstrap method based on the measurement error of t-test, drew opposite conclusions. Subsequently, some researchers paid attention to the non-linear correlation of stock yields, by using the feed forward artificial neural network model, got the idea that technical analysis was effective. However, the reduced extra yields by elimination of data snooping and application of genetic programming model made the effective conclusion be questioned largely. So far, there is no consistent conclusion in terms of this problem that if technical analysis is valid, leaving a large researching space.
出处 《经济理论与经济管理》 CSSCI 北大核心 2013年第9期41-50,共10页 Economic Theory and Business Management
基金 国家自然科学基金(71003113) 教育部"新世纪优秀人才支持计划" 中央财经大学"青年科研创新团队支持计划"
关键词 技术分析 收益率非线性 数据窥查 事后选择偏差 technical analysis non-linear correlation of stock yields data snooping ex-post selection
  • 相关文献

参考文献37

  • 1William Brock, Josef Lakonishok, Blake LeBaron. Simple Technical Trading Rules and the Stochastic Properties of Stock Returns [J. Journal of Finance, 1992, (12).
  • 2Ryan Sullivan, Allen Timmermann, Halbert White. Data Snooping, Technical Trading Rule Performance, and the Bootstrap [J. Journal of Finance, 1999, (10).
  • 3Eugene F. Fama, Marshall E. Blume. Filter Rules and Stock Market Trading Profits JJ. Journal of Business, 1966, (39).
  • 4Rafael La Porta, Josef lakonishok, Andrei Shleifer, Robert Vishny. Good News for Value Stocks: Further Evi- dence on Market Efficiency [J. Journal of Finance, 1997, 52 (2).
  • 5Colin Fyfe, John Paul Marney, Heather Tarbert. Risk Adjusted Returns from Technical Trading: A Genetic Pro- gramming Approach [J. Applied Financial Economics, 2005.
  • 6Ramazan Gencay. Optimizationof Technical Trading Strategies and the Profitability in Security Markets [J. Econom- ics Letters, 1998.
  • 7Ben R. Marshall, Rochester H. Cahan, Jared M. Cahan. Does Intraday Technical Analysis in the U. Equity Market Have Value [J. Journal of Empirical Finance, 2008.
  • 8Franklin Allen, Risto Karjalainen. Using Genetic Algorithms to Find Technical Trading Rules [J]. Journal of Finan- cial Economics, 1999.
  • 9Mark J. Ready. Profitsfrom Technical Trading Rules [J]. Financial Management, 2002.
  • 10Christopher Neely, Paul Weller, Rob Dittmar. Is Technical Analysis in the Foreign Exchange Market Profitable? A Genetic Programming Approach [J. Jouralof Financial and Quantitative Analysis, 1997, (a2).

二级参考文献49

  • 1俞乔.市场有效、周期异常与股价波动——对上海、深圳股票市场的实证分析[J].经济研究,1994,29(9):43-50. 被引量:297
  • 2宋颂兴,金伟根.上海股市市场有效实证研究[J].经济学家,1995(4):107-113. 被引量:161
  • 3Fama E, Blume M. Filter rules and stock market trading profits[J].Journal of Business, 1966, 39(1) : 226 - 241.
  • 4Jensen M, Bennington G. Random walks and technical theories: Some additional evidences[J]. Journal of Finance, 1970, 25(2): 469 - 482.
  • 5Sweeney R. Some New filter ruletests: Methods and results[J]. Journal of Financial and Quantitative Analysis, 1988, 23(3) : 285 - 300.
  • 6Brock W, Lakonishok J, LeBaron B. Simple technical trading rules and the stochastic properties of stock returns[J]. Journal of Finance, 1992, 47(5) : 1731 - 1764.
  • 7C, encay R. Non-linear prediction of security returns with moving average rules[J]. Journal of Forecasting, 1996, 15(3) : 165 - 174.
  • 8C, encay R, Stengos T. Moving average rules, volume and the predictability of security returns with feedforward networks [J]. Journal of Forecasting, 1998, 17(6): 401-414.
  • 9Dacorogna M, Gencay R, Muller U, et al. An introduction to high frequency finance [ M ]. San Diego and London: Academic Press, 2001.
  • 10Mtfller U, Dacorogna M, Dave R, et al. Volatilities of different time resolutions-analyzing the dynamics of market components[J]. Journal of Empirical Finance, 1997, 4(2) : 213 - 239.

共引文献87

同被引文献12

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部