期刊文献+

价格影响需求的易变质产品动态定价模型 被引量:3

Dynamic Pricing Model of Perishable Items with Price-dependent Demand
下载PDF
导出
摘要 在产品销售价格影响需求的条件下,利用最优控制理论建立了易变质产品的动态定价模型,目标是最大化产品销售周期内总的销售利润。利用Pontryagin最大值原理得到了产品销售价格的最优性条件。通过对模型的理论分析得出如果产品销售价格介于单位产品购买费用和产品销售价格上限之间,且产品库存在销售周期结束之前始终为正时,销售周期内各时刻的产品最优销售价格一定大于与相应时刻变质率和产品单位库存成本有关的一个下界,销售周期内各时刻的产品最优库存水平一定小于与相应时刻变质率和产品单位库存成本有关的一个上界。 The dynamic pricing model of the perishable product with the price-dependent demand using the optimal control theory is es- tablished. The objective is to maximize the total sales profit within the sale planning horizon. The optimal conditions of the sale price are obtained according to the Pontryagin maximum principle. And if the sale price is between the unit purchasing cost of the product and the upper limit of the sale price, a lower limit of the optimal sale price and a higher limit of the optimal inventory level at every time point of the sale planning horizon are obtained which are both related to the perishable rate and the unit holding cost of the product at every time point of the sale planning horizon.
出处 《控制工程》 CSCD 北大核心 2013年第5期821-824,共4页 Control Engineering of China
基金 国家自然科学基金资助项目(71301126) 教育部人文社会科学基金资助项目(11YJC630011) 中国博士后科学基金资助项目(2012M511215 2013T60723) 湖北省教育厅人文社会科学研究资助项目(2010Q054 2012G080) 湖北省教育厅科学技术研究资助项目(B20111603)
关键词 易变质产品 动态定价 价格影响需求 Pontryagin最大值原理 kperishable product dynamic pricing price-dependent demand pontryagin maximum principle
  • 相关文献

参考文献17

  • 1Ghare,P.M.,Schrader,G.H.A model for exponentially decaying inventory system[J].International Journal of Production Research,1963,21(2):449-460.
  • 2PadmanabhanG,VartP.An EOQ model for items with stock-de-pendent consumption rate and exponential decay [J].Engineering Costs and Production Economics,1990,18(4):241-246.
  • 3Datta TK,PaI A K.Deterministic inventory systems for deteriorating items with inventory level-dependent demand rate and shortages [J].Operations Research,1990,32(2):213-224.
  • 4GoyalSK,GunaselaranA.An integrated production-inventory-marketing model for deteriorating items[J].Computers and Industrial Engineering,1995,28(4):755-762.
  • 5Sethi,S.and Thompson,G.Optimal control theory-applications to management science[M].2nd Edition.The Hague:Kluwers Publishing,2000.
  • 6Khmelnitsky E,Gerchak Y.Optimal control approach to production systems with inventory-level-dependent demand [J].IEEE Transactions on Automatic Control,2002,47(2):289-292.
  • 7Young H.Chun.Optimal pricing and ordering policies for perishable commodities [J].European Journal of Operational Research,2003,144(1); 68-82.
  • 8RauH,WuMY,WeeHM.Integrated inventory model for deteriorating items under a multi-echelon supply chain environment [J].International Journal of Production Economics,2003,86(2):155-168.
  • 9YangPC,WeeHM.A Win-win strategy for an integrated vendor-buyer deteriorating inventory system [J].Math-ematical Modelling and Analysis,2005,11(1):541-546.
  • 10Perakis G and Sood A.Competitive multi-period pricing for perishable products:A robust optimization approach [J].Mathematical Programming,2006,107(1-2):295-335.

二级参考文献25

  • 1Wee H M. A deterministic lot-size inventory model for deteriorating items with shortages and a declining market [J] . Coinputers and Operations Research, 1995, 22: 345-356.
  • 2Hariga M. Optimal EOQ models for deteriorating items with time varying demand[J]. Journal Operation Research Society, 1996, 47: 1228-1246.
  • 3Hariga M. Alyan A. A lot sizing heuristic for deteriorating items with shortages in growing and declining markets[J]. Computers and Operations Research, 1997, 24: 1075-1083.
  • 4Abad P L. Optimal pricing and lot sizing under conditions of perishability and partial backordering[J]. Management Science, 1996, 42: 1093-1104.
  • 5Abad P L. Optimal pricing and order size for a reseller under partial backordering[J]. Computers and Operations Research, 2001, 28: 53-65.
  • 6Papachristos S. Skouri K. An inventory model with deteriorating items, quantity discount, pricing and time-dependent partial backlogging[J]. International Journal of Production Economics 2003, 83: 247-256.
  • 7Wee H M. Deteriorating inventory model with quantity discount [J]. pricing and partial backordering. Int. J. Production Economics, 1999, 59: 511-518.
  • 8Dye C Y. Joint pricing and ordering policy for a deteriorating inventory with partial backlogging[J]. Omega 2007, 35: 184-189.
  • 9Bhunia A K, Maiti M. An inventory model of deteriorating items with lot-size dependent replenishment cost and a linear trend in demand[J]. Applied Mathematical Modelling, 1999, 23: 301-308.
  • 10罗兵 杨秀苔 熊中楷.考虑部分短缺量拖后情况下的EOQ模型及应用.重庆大学学报:社会科学版,2001,7:97-98,107.

共引文献4

同被引文献25

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部