期刊文献+

一类抛物型分布参数系统的边界控制 被引量:1

Boundary Control for a Class of Parabolic Distributed Parameter Systems
下载PDF
导出
摘要 利用经典李对称理论,研究一类抛物型分布参数系统的边界控制问题,分别设计开环和闭环形式的边界控制律,实现系统状态的定态控制。借助于无穷小生成元作为分析工具,应用微分方程的不变性条件,确定系统经典李对称的具体表示形式,即其所对应的无穷小生成元表达式。之后,分别针对开环和闭环控制结构,设计出系统解析形式的边界控制条件。通过设定系统参数、初始条件和控制目标,开环和闭环边界控制都能实现设定的控制要求。相比较而言,开环控制的输出误差收敛速度较慢;闭环控制收敛速度较快,不过入口附近有无法完全避免的超调现象。提供的研究结果,对于一类包含传导和对流特性的温度或浓度模型的定态控制问题有一定指导意义。 Using classical Lie symmetry theory, boundary control for a class of parabolic distributed parameter systems has been stud- ied, and the control laws on open loop and closed loop have been designed to control the system reaching the fixed stationary state. By means of infinitesimal generators and invariance condition, the analytic control conditions on open loop and closed loop are presented af- ter having the classical Lie symmetry of the system, which is expressed by infinitesimal generators. The control purpose can be satisfied under the two types of control laws by setting system parameters, initial condition and control purpose ahead. Comparatively, from the simulation, the convergence of output error under open loop control is slower than that under closed loop control, and however there are overshoot phenomena nearby the intake under closed loop control. The resuh proposed in the paper can be applied for controlling a class of temperature or concentration models with conduction and convention characteristics.
出处 《控制工程》 CSCD 北大核心 2013年第5期837-840,共4页 Control Engineering of China
基金 国家自然科学基金资助项目(20976193) 中国石油大学(北京)科研基金(KYJJ2012-05-31)
关键词 分布参数系统 边界控制 经典李对称 无穷小生成元 不变性条件 distributed parameter systems boundary control classical Lie symmetry infinitesimal generator invariance condition
  • 相关文献

参考文献16

  • 1Ng J,Dubljevic S.Optimal boundary control of parabolic PDE with time-varying spatial domain [C].Hangzhou,China:Proceedings of the 2011 4 International Symposium on Advanced Control of Industrial Processes,2011.
  • 2Alessandri A,Gaggero M,Zoppoli R.Feedback optimal control of distributed parameter systems by using finite-dimensional approximation schemes [J].IEEE Transactions on Neural Networks and Learning Systems,2012,23(6):984-995.
  • 3A.Shidfar,G.R.Karamali.Numerical solution of inverse heat conduction problem with nonstationary measurements [J].Applied Mathematics and Computation,2005,168(1); 540-548.
  • 4Smyshlyaev A,Krstic M.Backstepping observers for a class of parabolic PDEs [J].Systems & Control Letters,2005,54(1):613-625.
  • 5Smyshlyaev A,Krstic M.On control design for PDEs with space-dependent diffusivity or time-dependent reactivity [J].Automatica,2005,41(1);1601-1608.
  • 6Krstic M,Smyshlyaev A.Adaptive boundary control for unstable parabolic PDEs-Part I:Lyapunov design [J].IEEE Transactions on Automatic Control,2008,53(7):1575-1591.
  • 7Smyshlyaev A,Krstic M.Adaptive boundary control for unstable parabolic PDEs-Part II:estimation-based designs [J].Automati-ca,2007,43(9):1543-1556.
  • 8Smyshlyaev A,Krstic M.Adaptive boundary control for unstable parabolic PDEs.-Part M:output-feedback examples with swapping identifiers [J].Automatica,2007,43(9):1557-1564.
  • 9Krstic M,Smyshlyaev A.Adaptive control PDEs [J].Annual Reviews in Control,2008,32(2):149-160.
  • 10李健,刘允刚.一类不确定热方程自适应边界控制[J].自动化学报,2012,38(3):469-473. 被引量:13

二级参考文献23

  • 1石贤良,吴成富.基于MATLAB的最小二乘法参数辨识与仿真[J].微处理机,2005,26(6):44-46. 被引量:44
  • 2居怀明.载热质物性计算程序及数据手册[M].北京:原子能出版社,1993..
  • 3刘高典.温度场的数值分析[M].重庆:重庆大学出版社,1990..
  • 4吴俊霖,陈进兴.正交函数运算矩阵及其在微分方程之应用[D].台湾:国立成功大学电机资讯学院,2003.
  • 5Zhou X,Yu S Y,Yu J,et al. Temperature measurement and control system of large-scaled vertical quench furnace based on temperature field[ J]. Journal of Control Theory and Applications (JCTA), 2004,2(4) :401-405.
  • 6Triggiani R.Boundary feedback stabilizability of parabolic equations.Applied Mathematics and Optimization,1980,6(1):201-220.
  • 7Kim J U,Renardy Y.Boundary control of the Timoshenko beam.SIAM Journal on Control and Optimization,1987,25(6):1417-1429.
  • 8Lasiecka I,Triggiani R.Control Theory for Partial Differ-ential Equations:Continuous and Approximation Theories.Cambridge:Cambridge University Press,2000.
  • 9Boskovic D M,Krstic M,Liu W J.Boundary control of an unstable heat equation via measurement of domain-averaged temperature.IEEE Transactions on Automatic Control,2001,46(12):2022-2028.
  • 10Liu W J.Boundary feedback stabilization of an unstable heat equation.SIAM Journal on Control and Optimization,2004,42 (3):1033-1043.

共引文献15

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部