期刊文献+

网络社区发现优化:基于随机游走的边权预处理方法 被引量:4

Optimizing Community Detection Using the Pre-processing of Edge Weighted Based on Random Walk in Networks
下载PDF
导出
摘要 在网络日趋复杂化、巨大化的背景下,仅依靠网络拓扑特征难以提高现有社区发现算法的精确度和性能。该文提出一种优化网络社区发现的边权预处理方法,基于马尔可夫随机游走理论建模社区结构对复杂网络行为的影响,根据多重随机游走对网络连接的遍历情况,重新衡量网络边权。预处理后的边权作为网络拓扑的有效补充信息,能够将网络社区结构去模糊化,从而改善现有算法的社区发现性能。对于一些典型的计算机生成网络和真实网络,经实验验证:该预处理方法能够有效提升现有部分社区发现算法的准确性和效率。 In the context of social network becomes more and more complicated and huge, it is difficult to improve the accuracy and performance of existing community detection algorithms only relying on the network topological features. Based on Markov random walk theory, this paper proposes a method of edge weighted pre-processing for optimizing community detection, models community structures how to influence on the complex network behaviors. According to the situation of multiple random walk traverses on the network links, the network edges weight is reset, and makes it as the network topology effective supplementary information to promote the network community structure defuzzification, thus the performance of the existing algorithms is improved for community detection. For a set of typical benchmark computer-generated networks and real-world network data sets, the experimental results show that the pre-processing method can effectively improve the accuracy and efficiency of some existing community detection algorithms.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第10期2335-2340,共6页 Journal of Electronics & Information Technology
基金 国家863计划项目(2011AA010605)资助课题
关键词 社会网络 社区发现 预处理 随机游走 边权 Social network Community detection Pre-processing Random walk Edge weighted
  • 相关文献

参考文献14

  • 1杨博,刘大有,LIU Jiming,金弟,马海宾.复杂网络聚类方法[J].软件学报,2009,20(1):54-66. 被引量:207
  • 2Girvan M and Newman M E J. Coinmunity structure in social and biological networks[J]. Proceedings of the National Academy of Science, 2002, 9(12): 7821-7826.
  • 3Yang B, Cheung W K, and Liu 3 M. Community mining from signed social networks[J]. IEEE Transactions on Knowledge and Data Ertgmeevin9, 2007, 19(10): 1333 1348.
  • 4Newman M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69(6): 066133.
  • 5Blondel V D, Guillaume J L, Lambiotte R, et al.. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Ezperiment, 2008, COI: 10.1088/1742-5468/2008/10/910008.
  • 6Newman M E J. A measure of betweenness centrality based on random walks[J]. Social Networks, 2005, 27(1): 39-54.
  • 7Cai Bing-jing, Wang Hai-ying, Zheng Hui-ru, et al.. An improved random walk based clustering algorithm for community detection in complex networks[C]. 2011 IEEE International Conference, on Systems, Man,and Cybernetics, Alaska, USA, Oct. 2011: 2162-2167.
  • 8Rosvall M and Bergstrom complex networks reveal C T. Maps of random walks on community structure[J]. PNAS,2008, 105(4): 1118 1123.
  • 9Alahakoon T, Tripathi R, Kourtellis N, ct al.. K-path centrality: a new centrality measure in social networks[C]. Proceedings of 4th Workshop on Social Network Systems, Salzburg, Austria, 2011:1 6.
  • 10Ferrara E. Community structure discovery in Facebook[J] International Journal of Social Network Mining, 2012, l(l) 67 90.

二级参考文献56

  • 1Watts D J, Strogatz SH. Collective dynamics of Small-World networks. Nature, 1998,393(6638):440-442.
  • 2Barabasi AL, Albert R. Emergence of scaling in random networks. Science, 1999,286(5439):509-512.
  • 3Barabasi AL, Albert R, Jeong H, Bianconi G. Power-Law distribution of the World Wide Web. Science, 2000,287(5461):2115a.
  • 4Albert R, Barabasi AL, Jeong H. The Internet's Achilles heel: Error and attack tolerance of complex networks. Nature, 2000, 406(2115):378-382.
  • 5Girvan M, Newman MEJ. Community structure in social and biological networks. Proc. of the National Academy of Science, 2002,9(12):7821-7826.
  • 6Guimera R, Amaral LAN. Functional cartography of complex metabolic networks. Nature, 2005,433(7028):895-900.
  • 7Palla G, Derenyi I, Farkas I, Vicsek T. Uncovering the overlapping community structures of complex networks in nature and society. Nature, 2005,435(7043):814-818.
  • 8Wilkinson DM, Huberman BA. A method for finding communities of related genes. Proc. of the National Academy of Science, 2004,101(Suppl.1):5241-5248.
  • 9Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D. Defining and identifying communities in networks. Proc. of the National Academy of Science, 2004,101 (9):2658-2663.
  • 10Palla G, Barabasi AL, Vicsek T. Quantifying social group evolution. Nature, 2007,446(7136):664-667.

共引文献206

同被引文献26

  • 1MILLS M, ALVAREZ-ROMERO J G, VANCE-BORLAND K, et al. Linking regional planning and local action: towards using so- cial network analysis in systematic conservation planning [ J]. Bio- logical Conservation, 2014, 169: 6-13.
  • 2BOYD D, GOLDER S, LOTAN G. Tweet, tweet, retweet: conver- sational aspects of retweeting on twitter [ C]// Proceeding of the 43rd Hawaii International Conference on System Sciences. Piscat- away: IEEE, 2010: 1-10.
  • 3RAMAGE D, DUMAIS S T, LIEBLING D J. Characterizing microb- logs with topic models [ C]// Proceedings of the 4th International Conference on Weblogs and Social Media. Menlo Park: AAAI Press, 2010:23 -26.
  • 4GROENEWEGEN P, MOSER C. Online communities: challenges and opportunities for social network research [ M]// Contemporary Perspectives on Organizational Social Networks. Bingley: Emerald, 2014, 40:459-473.
  • 5NEWMAN M E J. Modularity and community structure in networks [ J]. Proceedings of the National Academy of Sciences, 2006, 103 (23) : 8577 -8582.
  • 6BARABASI A L. Scale-free networks: a decade and beyond [ J]. Science, 2009, 325(5939): 412-413.
  • 7TRUNG D N, JUNG J J. Sentiment analysis based on fuzzy propaga- tion in online social networks: a case study on TweetScope [ J]. Computer Science and Information Systems, 2014, 11( 1): 215 - 228.
  • 8RAVASAN A Z, ROUHANI S, ASGARY S. A review for the on- line social networks literature (2005-2011) [ J]. European Jour- nal of Business and Management, 2014, 6(4) : 22 -37.
  • 9JOSANG A, ISMAILB R, BOYDB C. A survey of trust and repu- tation systems for online service provision [ J]. Decision Support Systems, 2007, 43(2): 618 -644.
  • 10SEE-TO E W K, HO K K W. Value co-creatian and purchase in- tention in social network sites: the role of electronic Word-of-Mouth and trust--a theoretical analysis [ J]. Computers in Human Behav- ior, 2014, 31: 182-189.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部