期刊文献+

多跳认知水声通信中的分布式稀疏频谱检测算法 被引量:3

Distributed Sparse Spectrum Detection in Multihop Cognitive Underwater Acoustict Communication Networks
下载PDF
导出
摘要 水声信道常表现为严重的频率选择性衰落、低的声波传播速度和严重的多径效应等。这些特性使得认知水声通信中的频谱检测变得非常困难。除此之外,水声通信网络通常为自组织网络,缺少融合中心,而基于融合中心的频谱检测算法需要将各个认知用户的感知数据传送到融合中心,因此该方法在认知水声通信中是不可行的。与认知无线电类似,由于低的频谱使用率,认知水声通信中的频谱也是稀疏的。考虑到水声信道的特殊性,基于压缩感知理论,该文对认知无线电中的压缩频谱检测算法进行了改进,提出了两种不同情况下(已知水声信道状态信息和未知水声信道状态信息)的适用于认知水声通信的分布式稀疏频谱检测算法。通过近邻认知用户之间的合作,这两种算法利用空间分集增益和联合稀疏特性来提高算法的频谱检测性能。通过分布式计算和局部优化,新算法使得认知用户与其近邻认知用户之间只需进行少量的数据交互。仿真实验结果证明了该文提出的算法在检测认知水声通信系统中频谱空洞的有效性。 Since the underwater acoustic channel suffers often severe frequency-dependent attenuation, low speed of wave propagation and excessive multipath delay spread, the implementation of spectrum detection in Cognitive Underwater Acoustic Communication (CUAC) becomes very difficult. Beside, there is no fusion center in Ad hoc underwater acoustic communication networks. Therefore, the centralized spectrum detection methods in CUAC are not available. Similar to Cognitive Radio (CR), since the spectrum utility in CUAC is also low, the spectrum is sparse. Based on compressed sensing and considering the specificity of underwater acoustic, compressed spectrum detection algorithm for cognitive radio is improved, and then two distributed cooperative spectrum detection methods, which are suitable for CUAC, are proposed for different scenarios (with and without channel state information). By strengthening among secondary users, the proposed algorithms obtain spatial diversity gains and exploit joint sparse structure to improve the performance of spectrum detection. Via distributed computation and localized optimization, the new schemes entail low computation and power overhead per cognitive users. Simulation results corroborate the effectiveness of the proposed methods in detecting the spectrum holes in underwater acoustic environment.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第10期2359-2364,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60872073 6097501 51075068) 教育部博士点专项基金(20110092130004)资助课题
关键词 认知水声通信 频谱检测 压缩感知 分布式计算 Cognitive underwater acoustic communication Spectrum detection Compressed sensing Distributedcomputing
  • 相关文献

参考文献15

  • 1Polprasert C, Ritcey J A, and Stojanovic M. Capacity of OFDM systems over fading underwater acoustic channels[J]. IEEE Journal of Oceanic Engineering, 2011, 36(4): 514 524.
  • 2Wang Yong-gang, Tang Jian-sheng, Pan Yue, et al.. Underwater communication goes cognitive[C]. Proceedings of IEEE Oceans, Quebec City, Sept. 15 18, 2008:1 4.
  • 3Tan Hwee-pink, Seah W K G, and Doyle L. Exploring cognitive techniques for bandwidth management in integrated underwater acoustic systemsIC1. Proceedings of the IEEE Oceans, Quebec City, Sept. 15%8, 2008: 126-132.
  • 4Torres D, Charbiwala Z, Friedman J, et al.. Spectrum sigmding for cognitive underwater acoustic channel allocation [C]. Proceedings of IEEE Conference on Computer Communications Workshops, San Diego, March 15-19, 2010: 16.
  • 5Bicen A O, Sahin A B, and Akan O B. Spectrum-aware underwater networks: cognitive acoustic communications [J]. IEEE Vehicular Technology Magazine, 2012, 7(2): 34 40.
  • 6Ahmed S and Arslan H. Cognitive intelligence in the mapping of underwater acoustic communication environments to channel models[C]. Proceedings of IEEE Oceans, Bremen, 2009: 1-9.
  • 7Havary-Nassab V, Hassan S, and Valaee S. Compressive detection for wide-band spectrum sensing[C]. Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Dallas, March 14 19, 2010: 3094-3097.
  • 8Zeng Fan-zi, Li Chen, and Tian Zhi. Distributed compressive spectrum sensing in cooperative multihop cognitive networks [J]. IEEE Journal of Selected Topics oft Signal Processing,2011, 5(i): 37 48.
  • 9Bazerque J A and Giannakis G B. Group-Lasso on splines for spectrum cartography[J]. IEEE Transactions on Si97zal Processirtg, 2011, 59(10): 4648-4663.
  • 10Tian Zhi, Tafesse Y, and Sadler B M. Cyclic feature detection with sub-Nyquist sampling for wideband spectrum sensing [J] [EEE Journal of Selected Topics on Signal Processing, 2012, 6(1): 58-69.

同被引文献22

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部