期刊文献+

自适应小波包图像压缩感知方法 被引量:6

Adaptive Wavelet Packet Image Compressed Sensing
下载PDF
导出
摘要 该文提出一种自适应小波包图像压缩感知方法。该方法选用小波包变换分解图像,基于数学期望和信息熵分析各个小波包系数块的属性,自适应地将其划分为低频信号、无价值信号、特殊处理信号和压缩感知处理信号等4种信号类型,再针对不同的信号类型设计对应的处理方法,适应不同特征的图像。通过此种方法,在图像压缩感知过程中,可以根据不同图像和小波包系数块自适应地选取采样值,来提高压缩感知质量。实验结果表明该文提出的自适应小波包图像压缩感知方法在相同采样值的前提下,不仅提高了图像的重构质量,同时也降低了算法的计算复杂度和所需存储空间。 An adaptive wavelet packet image compressed sensing is proposed, in which the wavelet packet transform is used to decompose the image. After the image is decomposed, the properties of each packet wavelet block are analyzed with the introduction of mathematical expectation and information entropy. According to the characteristic of each packet wavelet block, the signals are classified to four types of signal, that is the low frequency signal, no value signal, special processing signal and compressed sensing processing signal adaptively. Then the corresponding methods are designed to deal with different types of signal, which can adapt to the different characteristic of images. In this method, the quality of compressed sensing is improved, which is because sampling numbers can be adaptively selected according to different images and packet wavelet blocks. Experimental results show that, when the sampling number is the same, the proposed algorithm can not only greatly improve the reconstruction quality of image, but also reduce the computational complexity and required memory.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第10期2371-2377,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60973127) 教育部新世纪优秀人才计划基金资助课题
关键词 图像处理 压缩感知 小波包 数学期望 信息熵 Image processing Compressed Sensing (CS) Wavelet packet Mathematical expectation Informationentropy
  • 相关文献

参考文献10

  • 1Baraniuk R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 2Salam A A, Fawzy F, Shaker N, et al.. K1. High performance compressed sensing MRI image reconstruction[C]. 29th National Radio Science Conference (NRSC), Egypt, 2012: 627-631.
  • 3Li J, Zhang S S, and Chang J F. Two-dimensional random sparse sampling for high resolution SAR imaging based on compressed sensing[C]. Radar Conference (RADAR), Chengdu, China, 2012: 0001-0005.
  • 4Tsaig Y and Donoho D L. Extensions of compressed sensing[JI. Signal Processing, 2006, 86(3): 549-571.
  • 5Deng C W, Lin W S, and Lee B S. Robust image compression based on conlpressive sensing[C]. Proceedings of IEEE International Conference on Multimedia and Expo (ICME), Singapore, 2010:462 467.
  • 6练秋生,肖莹.基于小波树结构和迭代收缩的图像压缩感知算法研究[J].电子与信息学报,2011,33(4):967-971. 被引量:10
  • 7Richard G, Volkan C, Marco F D, et al.. Model-based compressive sensing[J]. IEEE Transactions on Information Theow, 2010, 56(4): 1982-2001.
  • 8He L and Carin L. Exploiting structure in wavelet-based bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(9): 3488-3497.
  • 9Tsiaparas N N, Golemati S, Andreadis I, et al.. Comparison of multriresolution features for texture classification of carotid atherosclerosis form B-Mode ultrasound[J]. IEEE Transactions on Information Technology in Biomedicine, 2011, 15(1): 130-137.
  • 10Manimala K, Selvi K, and Ahila R. Optimization techniques for improving power quality data mining using wavelet packet based support vector machine[J]. Neurocomputing, 2012, 77(1): 36-47.

二级参考文献17

  • 1Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Candes E J, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 3Chert S B, Donoho D L, and Sannders M A. Atomic decomposition by basis pursuit[J]. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61.
  • 4Figueiredo M A T, Nowak R D, and Wright S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597.
  • 5Blumensath T and Davies M E. Iterative hard thresholding for compressed sensing [J]. Applied and Computational Harmonic Analysis, 2009, 27(3): 265-274.
  • 6Mallat S and Zhang Z. Matching pursuits with timefrequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
  • 7Tropp J A and Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
  • 8Needell D and Vershynin D. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit [J]. Foundations of Computational Mathematics, 2009, 9(3): 317-334.
  • 9Needell D and Tropp J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples [J]. Applied and Computational Harmonic Analysis, 2008, 26(3): 301-321.
  • 10Lu Y M and Do M N. Sampling signals from a union of subspaces[J]. IEEE Signal Processing Magazine, 2008, 25(2): 41-47.

共引文献9

同被引文献36

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部