期刊文献+

不同原子分类方案的电矩矢量对芳香胺类的基因毒性的综合研究

The comprehensive research of genotoxicity for aniline based on different classification of atom type in vector of molecular electronegative algorithm
原文传递
导出
摘要 利用电矩矢量(Vmed)的分子结构数字技术,通过不同原子类型分类方法探索芳香胺类的基因毒性与组成原子类型之间的构效关系。随机多组的样本划分方案研究揭示,恰当的回归相关系数(R^2)能够在一定程度上避免模型的"过拟合"状态,原子划分类型越详细,就越容易陷入"过拟合"状态中。全分子集的4种原子类型分类方案综合研究揭示,化合物的基因毒性与分子结构的芳香性碳原子多寡、芳香氮原子的替换和稠环化程度等因素相关联。分析结果表明:通过不同的原子类型划分方案的综合研究,Vmed方法能够比较直观反映出分子结构的原子类型变化与性质变化关系,有效的指导化合物设计。 Based on the different schemes for classification of atomic type in the vector of molecular electronegative distance (Vmed), the QSAR between genotoxicity and special atom type in anilines was researched. The analyzed result illuminated the optimal QSAR regression model was correlated with the appropriate correlated coefficient (R) and it is effective method to avoid stepping into overfitting. The more abundant atom types were implemented, the more stepped into overfitting. The comprehensive analysis using four schemes of classification of atom type indicated genotoxicity for anilines were correlated with the numbers of aromatic carbon or polynuclear aromatics and whether or not with nitrogen inserted aromatic ring. The results also illustrated that the methods for Vmed is relative intuitionistic to extract the relationship between atom type and property for compounds and help us design candidate compounds.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2013年第9期998-1002,共5页 Computers and Applied Chemistry
基金 四川理工学院科技项目(2010XJKRL009) 绿色催化四川省高校重点实验室项目(LYJ1105)
关键词 原子类型 Vmed 芳香胺类 QSA PR 基因毒性 classification of atomic type vmed aniline or phenyl amine QSA/PR genotoxicity
  • 相关文献

参考文献14

  • 1Katritzky A R, Dobchev D A. Svetoslav slavov and mati kar. legitimate utilization of large descriptor pools for QSPR/QSAR models. J Chem Inf Model, 2008, 48(11):2207-2213. DOI: 10.1021/ci8002073.
  • 2Mati Karelson, lifts Kahn and Dobchev D A. Chemical structure: utility for prediction. Chem Rev, 2010, 110(10):5714-5789. DOI: 10.1021/cr900238d.
  • 3Shawn Martin. Lattice Enumeration for inverse molecular design using the signature descriptor. J Chem Inf Model, 2012, 52 (7):1787-1797. DOI: 10.1021/ci3001748.
  • 4Jamr6z M H, Rode J E, Stawomir Ostrowski, Piotr F, Lipifiski J, and Jan Cz. Dobrowolski. Chirality measures of a-amino acids. J Chem Inf Model, 2012, 52(6):1462-1479. DOI: 10.1021/ci300057h.
  • 5Eduardo B. de Melo and Marcia M C. Ferreira. Four-dimensional structure-activity relationship model to predict HIV-1 integrase strand transfer inhibition using LQTA-QSAR methodology. J Chem Inf Model, 2012, 52(7): 1722-1732. DOI: 10.1021/ci300039a.
  • 6Klaus L E. Kaiser. Qsar in Environmental Toxicology II: Proceedings of the 2nd International Workshop on Qsar in Environmental Toxicology. 1988, McMaster University, D. Reidel Pub Co. ISBN9789027725554.
  • 7Liu S S, Yin C S and Wang L S. Combined MEDV-GA-MLR method for QSAR of three panels of steroids, dipeptides, and COX-2 inhibitors. J Chem Inf Comput Sci, 2002, 42(3):749-756. DOI: 10.1021/ci010245a.
  • 8Karl Tuppurainen, Marja Viisas, Reino Laatikainen and Mikael Per'~kyl~i. Evaluation of a Novel Electronic Eigenvalue (EEVA) molecular descriptor for QSAR/QSPR studies: validation using a benchmark steroid data set. J Chem Inf Comput Sci, 2002, 42(3):607-613. DOI: 10.1021/ci0103830.
  • 9Uko Maranl, Mati Karelsonl and Katritzky A R. A comprehensive QSAR treatment of the genotoxicity of heteroaromatic and aromatic amines. Quant Struct-Act Rel, 1999, 18(1):3-10.
  • 10Basak S C, Mills D R, Balaban A T and Gute B D. Prediction of mutagenicity of aromatic and heteroaromatic amines from structure: a hierarchical QSAR approach. J Chem Inf Comput Sci, 2001, 41(3):671-678. DOI: 10.1021/ci000126f.

二级参考文献69

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部