期刊文献+

计及发电功率随机性的暂态稳定裕度概率分布计算 被引量:3

Calculation of Transient Stability Margin Distribution Under Random Power Injection Conditions
下载PDF
导出
摘要 基于扩展等面积准则(EEAC),将电力系统中发电机驱动功率的概率数字特征,变换成失稳模式对应的两群驱动功率的概率数字特征;并将系统稳定裕度按Taylor级数表示成以两群驱动功率为变量、以稳定裕度灵敏度为系数的线性化表达式,通过半不变量求取稳定裕度的概率数字特征;最后利用Gram-Charlier级数计算出系统暂态稳定裕度的概率分布。其中,对于理想两群失稳模式,仅需解析方法即可完成快速计算;对于非理想两群失稳模式,则采用时域仿真计算灵敏度系数,并用分段函数的方法解决由失稳模式变化导致稳定裕度或灵敏度系数突变的描述问题。最后,用两个算例对所提出的算法进行了仿真验证。 Based on extend equal area criterion (EEAC), the numerical probabilistic characteristics of the driving power of generators in a power system are first transformed into those of two coherent generator groups corresponding to the instability mode, and then the numerical probabilistic characteristics of the system stability margin are calculated via semi-invariant by using the linearized expression of stability margin, i.e. , a Taylor series with two generator groups' driving power as variables and sensitivity parameters of the stability margin as coefficients. Therefore, the probability distribution of the transient stability margin can be calculated using the Gram-Charlier series. For the ideal two-coherent-group instability mode, fast calculation can be achieved just by an analytical method. For the nonideal two-coherent-group instability mode, sensitivity coefficients of the stability margin are calculated by time-domain simulation and a piecewise function based method is used to describe the stability margin distribution in case of sudden changes of the stability margin or sensitivity coefficients due to changes of the instability mode. The effectiveness of the proposed algorithm is verified by two numerical examples.
作者 沈超 方勇杰
出处 《电力系统自动化》 EI CSCD 北大核心 2013年第19期41-48,共8页 Automation of Electric Power Systems
基金 国家高技术研究发展计划(863计划)资助项目(2011AA05A104) 国家电网公司科技项目(SGCC-MPLG003 001-2012) 江苏省自然科学基金资助项目(SBK201122876) 已申请国家发明专利(申请号:201210263026.6)~~
关键词 随机性 暂态稳定 失稳模式 稳定裕度 概率分布 randomness transient stability instability mode stability margin probability distribution
  • 相关文献

参考文献8

  • 1LI Wenyuan. Risk assessment of power systems: models, methods and applications[M]. New York: John Wiley & Sons, 2005: 263-279.
  • 2ANDERSON P M, BOSE A. A probabilistic approach to power system stability analysis[J]. IEEE Trans on Power Apparatus and Systems, 1983, 102(8): 2130-2139.
  • 3CHIODO E, GAGLIARDI F, SCALA M L, et al. Probabilistic on-line transient stability analysis [J]. IEE Proceedings: Generation, Transmission and Distribution, 1999, 146(2): 176-180.
  • 4付川,余贻鑫,王东涛.电力系统暂态稳定概率[J].电力系统自动化,2006,30(1):24-28. 被引量:26
  • 5WU F F, TSAI Y K, YU Y X. Probabilistic steady-state and dynamic security assessment [J]. IEEE Trans on Power Systems, 1987, 3(1): 1-9.
  • 6汪隆君,王钢.基于动态安全域与埃奇沃斯级数的电力系统暂态稳定概率评估[J].中国电机工程学报,2011,31(1):52-58. 被引量:6
  • 7薛禹胜,刘强,Zhaoyang DONG,Gerard LEDWICH,袁越.关于暂态稳定不确定性分析的评述[J].电力系统自动化,2007,31(14):1-6. 被引量:77
  • 8徐泰山,刘华伟,鲍颜红,等.基于静态和暂态安全稳定模式的大电网在线预防控制方法:中国,CN200710135089.2[P].2007-11-08.

二级参考文献70

共引文献101

同被引文献33

引证文献3

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部