摘要
This work continued our general research program on obtaining metallic cerium by electrodeposition from NaCeF4 dis-solved in different molten fluorides. The structure of NaCeF4 (cubic or hexagonal depending on the way of preparation) was estab-lished by DTA analysis, IR spectra and X-ray diffraction. The heat capacity (Cp) of NaCeF4 was measured by differential scanning calorimetry in the temperature range of 300-1093 K using the“step-method”. The Cp was fitted by an equation with a satisfactory re-sult. Heat capacity was compared with that calculated from the Neumann-Kopp rule (NKR) and the deviations observed were consis-tent with the stability of the NaCeF4 compound.
This work continued our general research program on obtaining metallic cerium by electrodeposition from NaCeF4 dis-solved in different molten fluorides. The structure of NaCeF4 (cubic or hexagonal depending on the way of preparation) was estab-lished by DTA analysis, IR spectra and X-ray diffraction. The heat capacity (Cp) of NaCeF4 was measured by differential scanning calorimetry in the temperature range of 300-1093 K using the“step-method”. The Cp was fitted by an equation with a satisfactory re-sult. Heat capacity was compared with that calculated from the Neumann-Kopp rule (NKR) and the deviations observed were consis-tent with the stability of the NaCeF4 compound.
基金
support from North Atlantic Treaty Organization (NATO) under "Fellowship Grant/004- 005/2002"