期刊文献+

中温太阳能驱动的分布式功冷联产系统 被引量:1

A New Power/Cooling Cogeneration System Driven by Middle-Temperature Solar Thermal Energy
原文传递
导出
摘要 本文提出了一种中温太阳能驱动的分布式功冷联产系统,将350℃的槽式太阳能集热系统与基于正逆循环耦合的氨/水功冷联产系统有机结合,实现功冷联产.太阳热能首先驱动一个混合工质朗肯循环做功,透平排气直接输送到精馏塔底部驱动吸收式制冷循环制取-10℃冷能,从而实现了太阳热能的梯级利用。系统模拟结果表明,系统等效太阳能发电效率为22.6%,(火用)效率为14.1%。本文提出的新系统为高效利用中温太阳热能提供了一种新方法。 This paper proposes a new power/cooling cogeneration system driven by middle- temperature solar thermal energy. A parabolic trough solar energy collection system, an am- monia/water Rankine cycle, and an ammonia/water absorption refrigeration cycle are integrated rationally, The collected solar thermal energy at 350~C is utilized to generate superheated ammo- nia/water vapor and then the vapor expands in a turbine to generate power. The exhaust vapor of the turbine is recovered by the absorption refrigeration system to generate cooling energy at -10~C. The new system implements cascade utilization of solar thermal energy in the Rankine and refrigeration cycles. Simulation results show that the equivalent solar irradiation energy to power efficiency reaches 22.6% and the exergy efficiency is 14.1%. The proposed system may provide a new method for efficient utilization of middle-teInperature solar thermal energy.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2013年第10期1793-1797,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金研究项目(No.51176185) 科技支撑计划项目(No.2011BAJ07B06)
关键词 中温太阳热能 功冷联产 混合工质 middle-temperature solar thermal energy power/cooling cogeneration binary workingfluid
  • 相关文献

参考文献12

  • 1Kim D S, Infante Ferreira C A. Solar Refrigeration Op- tions - a State-of-the-Art Review [J]. International Jour- nal of Refrigeration, 2008, 31:3 -15.
  • 2] Syed A, Izquierdo M, Rodrlguez P, et al. A Novel Experi- mental Investigation of a Solar Cooling System in Madrid [J]. International Journal of Refrigeration, 2005, 28:859- 871.
  • 3Pietruschka D, Eicker U, Schumacher J, et al. Simulation Based Design Methods and Economical Analysis for Solar Driven Absorption Cooling Systems [C]// Proceedings of the Eurosun. Glasgow U.K, 2006:27 -30.
  • 4Antonopoulos K A, Rogdakis E D. Performance of Solar- Driven Ammonia-Lithium Nitrate and Ammonia-Sodium Thiocyanate Absorption Systems Operating as Coolers or Heat Pumps in Athens [J]. Applied Thermal Engineering, 1996, 16:127-147.
  • 5Xu S M, Huang X D, Du R. An Investigation of the Solar Powered Absorption Refrigeration System With Advanced Energy Storage Technology [J]. Solar Energy, 2011, 85: 1794-1804.
  • 6Moss T A, Brosseau D A. Final Test Results for the Schott HCE on a LS-2 Collector: Sandia Report [R]. Sandia Na- tional Laboratories, 2005.
  • 7Qu M, Yin H, Archer D H. Experimental and Model Based Performance Analysis of a Linear Parabolic Trough Solar Collector in a High Temperature Solar Cooling and Heat- ing System [J]. Journal of Solar Energy Engineering, 2010, 132:021004-1-021004-12.
  • 8Lokurlu A, Richarts F, Kruger D. High Efficient Utili- sation of Solar Energy With Newly Developed Parabolic Trough Collectors (Solitem PTC) for Chilling and Steam Production in a Hotel at the Mediterranean Coast of rkey [J]. International Journal of Energy Technology and Policy, 2005, 3:137 146.
  • 9赵雅文,洪慧,刘启斌,金红光.槽式集热器效率分析和互补电站镜场设计[J].工程热物理学报,2011,32(6):901-904. 被引量:9
  • 10Vijayaraghavan S, Goswami D Y. On Evaluating Effi- ciency of a Combined Power and Cooling Cycle [J]. Trans- actions of the ASME, Journal of Energy Resources Tech- nology, 2003, 125:221-227.

二级参考文献11

  • 1Suzuki A, Okamura H, Oshida L'Application Of Exergy Concept to the Analysis of Optimum Operating Conditions of Solar Heat Collectors [C]//ASME Solar Energy Conference. Anaheim. California, USA, 1986.
  • 2Tyagi S K, Wang S W, Singhal M K, et al. Exergy Anal. ysis and Parametric Study Of Concentrating Type Solar Collectors [J]. International Journal of Thermal Sciences, 2007, 46.1304-1310.
  • 3Odeh S D, Morrison G L, Behnia M. Modelling of Parabolic Trough Direct Steam Generation Solar Collec- tors [J]. Solar Energy, ,1998, 62(6). 395-406.
  • 4Petela R. Exergy of Undiluted Thermal Radiation [J]. Solar Energy, 2003, 74.469-488.
  • 5The Dow Chemical Company. DOWTHERM A [EB/OL]. [2011-02-17]. http.//www.dow.com/heattrans/prod/synt- hetic/dowtherm.htm.
  • 6Steinfeld A, Palumbo R. Solar Thermochemical Process Technologies [J]. Encyclopedia of Physical Science - Technology, 2001, 15.237-256.
  • 7Hong Hui, Zhao Yawen, Jin Honggaung. Proposed Partial Repowering of a Coal-Fired Power Ptartt Using Low-Grade Solar Thermal Energy [J]. International Journal of Thermodynamics, 2011, 14(1). 21-28.
  • 8Dejan A, Kearney D W, Kreith F. Second Law Analysis and Synthesis of Solar Collector Systems [J]. ASME Journal of Solar Energy Engineering, 1981, 103.23 -28.
  • 9Fuziwara M. Exergy Analysis for the Performance of Solar Collectors [J]. ASME Journal of Solar Energy Engineering, 1983, 105.163-168.
  • 10Kar A K. Exergy Efficiency and Optimum Operation of Solar Collectors [J]. Applied Energy, 1985,21.301-314.

共引文献8

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部